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Abstract 

For our project, we focused on the problem of semantic segmentation with application to 

autonomous driving. This entails classifying the pixels in an image based on the object that the 

pixel is part of. We chose to use a simple dataset in this domain that focuses on the classification 

of pixels in the image in a binary method: either the pixels are part of the road or they are not. We 

were able to perform experimentation involving a few established models in the field of semantic 

segmentation. We found that FCN8 resulted in the highest accuracy on the test set, but that UNet 

and SegNet had similar performances with significantly lower inference time, potentially making 

them more feasible to a real autonomous driving scenario. These models could potentially be 

augmented by adding more modern approaches that would potentially increase the complexity 

beyond the scope of this project or class.

1 Introduction 

In a time of rapid automation of tasks to 

reduce the amount of human labor, driving has 

been a primary focus for data scientists and 

deep learning engineers. Over the past decade, 

there has been a vast increase in the interest in 

autonomous vehicles due to the cost-

effectiveness of creating an alternative to 

human drivers. One way the autonomous 

driving field has been able to see such large-

scale improvements is the progress made in the 

semantic segmentation of deep learning 

models. Semantic segmentation is the ability 

for a vehicular system to use visual input, either 

images or videos, to classify the pixels of an 

image based on the objects that it sees. 

Fascinated by this concept of challenging a 

computer’s intelligence to match that of a 

complex human task, we decided to examine 

semantic segmentation models firsthand to see 

the success we could have in creating a system 

to recognize its surroundings. 

The first step in creating and testing a 

model is finding a data source that has enough 

data points while also provides enough useful 

features for our model to process. We 

examined three well-known datasets 

commonly used to test autonomous driving 

models: CityScapes [1], KITTI [2], and 

nuScenes [3]. We decided to each investigate a 

dataset and discuss our findings. It was clear 

once we went over our results that KITTI was 

the best dataset to pursue. While CityScapes 

and nuScenes provided massive quantities of 

data and in-depth classifications tags, loading 

these datasets requires not only techniques and 



nonstandard packages, but also a very long 

loading time (several hours for the CityScapes 

dataset, for example). On the other hand, the 

KITTI dataset is much more usable. Not only 

did it provide enough data (288 images for the 

training set and 300 images for the test set), its 

key targets are binary, meaning that each pixel 

is labeled either road or not road, which is 

easily trainable and testable for the scope of our 

project.  

 

 

Figure 1. CityScapes [1] Example Image 

 

 

Figure 2. nuScenes [3] Example Image 

 

 

Figure 3. KITTI [2] Example Image 

 

 Overall, our goal was to use this KITTI 

dataset and conclusively answer the question: 

can we make a model with similar intelligence 

to that of a human when it comes to recognizing 

the roadway for a vehicle? 

2 Models 

For this task, we decided to investigate 

the most common approaches taken for these 

applications across multiple domains. We 

found a specific subset of Convolution Neural 

Networks (CNNs) that are specialized in the 

unique problem of predicting each pixel of an 

image and we decided to focus on three 

categories of them: Fully Convolutional 

Networks (FCNs) [4], U-Net [5], and SegNet 

[6].  

FCNs are a very popular and widely 

used network architecture for the task of 

semantic segmentation. As its name suggests, 

all dominant layers of an FCN are 

convolutional layers, which is also where it 

differs significantly from most of the network 

structures we covered in class (VGG16, for 

example). For most CNN architecture, the last 

several layers are usually fully connected, since 

spatial information is no longer needed, and the 

output of the last convolutional layer can be 

flattened to a large vector. For FCN, however, 

spatial information needs to be preserved as we 

need to reconstruct the full image from those 

layers. To do so, fully connected layers in CNN 

models are replaced with convolutional layers 

with a very small representation per channel 

(usually 1x1). Another major difference 

between FCN and the model we used in class is 

the existence of upsampling and transposed 

convolutional layers. Both are easy to 

understand, as they are the opposite counterpart 

of pooling and convolutional layers. These 

layers help to reconstruct full resolution images 

from the intermediate result of smaller but 



deeper images produced by previous 

convolutional layers. 

There exist several variants of FCN, 

with the most common ones being FCN32, 

FCN16, and FCN8. The difference lies in how 

many time upsampling is done in the 

reconstructing part of the network, with FCN8 

having at most 8 upsampling at once and 

should, in theory, preserve more details of the 

original images and yield a better result, and 

FCN32 having at most 32 upsampling at once 

and lose the most details from the original 

images among its variants. UNet and SegNet 

share the same components as FCNs, both 

adopted the upsampling layers and transposed 

convolutional layers, but differ in the number 

combination of how many convolutional, 

pooling, upsampling, and transposed 

convolutional layers they use, as well as how 

results of lower-level pooling layers are used as 

supplementary details to help reconstruct the 

prediction images to their full resolution.  

 

Figure 5. Network structure of SegNet [6] 

3 Experiments 

We performed 8 experiments using the 

dataset with the models previously shown. The 

models used in the experiments were FCN8, 

FCN32, UNet, and SegNet. Each of these 

models was used in two separate experiments, 

with two models in a pair and tested for a 

different purpose. For FCN8 and FCN32, we 

tested the vanilla versions of them (without 

pre-trained weight) and the versions using pre-

trained VGG16. For UNet and SegNet, we also 

tested the vanilla versions but conducted 

comparison experiments with different 

optimizers, Adam and SGD, for each network 

structure. 

All experiments were done in 5 training 

epochs, with 512 steps in each epoch and 2 as 

the batch size (2 images per step). We split the 

data of 288 images into 256 for training and 32 

for testing, meaning that each training image is 

used 4 times in an epoch. Testing images were 

Figure 4. Network structure of FCN8, FCN16, and FCN32 [4] 

 

Figure 6. Network structure of U-Net [5] 

 



never used in the training process, thus should 

have a good representation of how well the 

model would perform on images it has never 

seen. We kept the balance of the category of 

images when splitting the training and test set. 

All experiments were done on the GPU of 

Gauss (Tesla K80), each using one GPU at a 

time. 

4 Results 

4.1 Model complexity (this section 

should go with Models) 

Out of more four models we tested, 

FCN8 has the most layers (44) and FCN32 has 

the least (34 layers). SegNet and UNet come in 

between 38 and 42 layers respectively. When it 

comes to the total number of parameters, FCNs 

are significantly larger than SegNet and UNet, 

with FCN32 having the most parameters 

(339,204,736) and taking up the most VRAM 

on GPU (about 11GB) and thus can only be run 

on the K80 on Gauss. Same with FCN8, which 

has 89,775,232 parameters, taking up about 

8.6GB of VRAM. This is largely due to the 

huge transposed convolutional layers in these 

structures. For example, one transposed 

convolutional layer in FCN32 has parameters 

of shape (192,608,256), which by itself 

producing more parameters (268,435,456) than 

the whole SegNet or UNet model. SegNet and 

UNet have much fewer parameters in contrast, 

coming in at 3,844,160 and 4,618,304 

respectively.  

Model complexity comes not only in 

the number of layers and parameters but also in 

how layers are structured. This is where FCN8 

and UNet are more complicated than SegNet 

and FCN32. Both FCN8 and UNet have 

concatenation layers, which neither SegNet nor 

FCN32 has. These concatenation layers take 

input from multiple layers, usually its previous 

convolutional layer and an earlier pooling 

layer, and concatenate or sum them to create 

the input of the next block. This allows the 

model to retrieve more details from earlier, less 

compressed images and makes it easier to 

reconstruct to the original resolution. 

4.2 Model efficiency 

Model efficiency can be evaluated with 

training time and inference time. Training time 

efficiency aligns very well with model 

complexity evaluated on layers and parameters. 

UNet and SegNet took only 184 seconds and 

186 seconds per epoch as described above in 

the experiment section, and FCN8 and FCN32 

took 675 seconds and 845 seconds per epoch, 

respectively. The total training time was about 

18min for UNet and 19min for SegNet, 

whereas for FCN8 and FCN32 training took 

57min and 80min. 

Model efficiency evaluated on 

inference time during testing was also as 

expected. UNet and SegNet were able to 

conduct inferences for 3 input images per 

second, and the number dropped to 0.86 for 

FNC8 and 0.64 for FCN32. 

4.3 Model accuracy 

Model accuracy will be evaluated on 

both training and testing accuracy. All four 

models were able to achieve a decent training 

accuracy of over 95%, with SegNet taking the 

lead with 97.5% and FCN8 taking the least with 

96.5%. This is not exactly what we expected 

based on analysis of these models, since FCNs 

should typically produce a better result than 

SegNet and UNet. One possible but unlikely 

explanation is overfitting, but with much more 

parameters FCNs should overfit easier than 

SegNet and UNet and should in theory achieve 



better training accuracy. An explanation for 

this issue is the structure of the network since 

although FCNs have more parameters than the 

other two, its structure is relatively simpler and 

would not overfit as quickly. We would 

investigate this issue if we had more time.  

Testing accuracy is exactly the opposite 

of training accuracy, with FCN8 taking the lead 

with 93.5% and SegNet taking the least with 

90.5%. The result is what we expected: that 

with enough training epochs FCNs (in 

particular FCN8) would outperform UNet and 

SegNet. All four models achieved over 90% 

accuracy on new input images, making these 

models quite usable for semantic segmentation 

in autonomous driving. 

 

TABLE 1 

Results of each model where VGG versions of FCN 

have the weights from said model frozen. SegNet and 

UNet models were optimized using either SGD or 

Adam. 

 road 

IoU 

road 

IoU 

mean 

IoU 

Freq.   

wt IoU 

FCN8 81.8 95.9 88.9 93.5 

FCN8 (VGG) 10.2 66.1 38.2 56.5 

FCN32 77.6 95.2 86.4 92.2 

FCN32 (VGG) 11.1 81.5 46.3 69.5 

SegNet (SGD) 77.7 94.9 86.3 92.0 

SegNet (Adam) 72.2 94.3 83.2 90.5 

UNet (SGD) 72.6 94.2 83.4 90.5 

UNet (Adam) 78.6 95.4 87.0 92.5 

5 Conclusion 

This project seemed to be significantly 

more complex than any problem we had 

encountered in this class, even more so than the 

other image-based problems that we 

considered for potential projects. This meant 

we ran into complexity issues in multiple 

locations, both in the time taken to load the 

datasets and train the models, to the size 

complexity of these models. We had multiple 

issues with loading the CityScapes and 

nuScenes datasets in an easy and time-efficient 

way, with some datasets getting stuck loading 

for over an hour. This meant we had to focus 

on reducing the complexity of the dataset as 

much as possible to allow us to achieve some 

form of results. This was coupled with the 

models that are required to accomplish 

reasonable levels of accuracy in this domain. 

Many of these highly respected and well-

known models that achieve high levels of 

accuracy are very complex with specific 

nuances to their construction and very large 

weight sets. This presented unforeseen issues 

with running on the servers at Rose-Hulman, as 

these models were too large to run on any of the 

GPUs other than those on Gauss, due to their 

larger VRAM. This meant that the training was 

slower due to the limitation of the older 

graphics card as well as the fact that we were 

only able to run two experiments at a time. 

If we were to continue this project with 

more time and resources, we would experiment 

with other models and addons such as 

autoencoders [7] or Recurrent Convolutional 

Neural Networks (RCNNs) to move towards 

more current cutting-edge approaches for 

semantic segmentation. These would most 

likely require higher levels of complexity that 

is far outside of the scope that is feasible for 

this class, and most likely outside the scope 

based on our current understanding of deep 

learning. Nevertheless, these additional 

possibilities lend themselves well towards 

pushing the limits of model accuracy as well as 

bringing them closer and closer to being 

commonplace in autonomous driving 

applications.
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