Road-Based Semantic Segmentation
Experimentation

Chris Comeau, Brevin Lacy, Max Wang
MA416
11/16/2020

Abstract

For our project, we focused on the problem of semantic segmentation with application to
autonomous driving. This entails classifying the pixels in an image based on the object that the
pixel is part of. We chose to use a simple dataset in this domain that focuses on the classification
of pixels in the image in a binary method: either the pixels are part of the road or they are not. We
were able to perform experimentation involving a few established models in the field of semantic
segmentation. We found that FCN8 resulted in the highest accuracy on the test set, but that UNet
and SegNet had similar performances with significantly lower inference time, potentially making
them more feasible to a real autonomous driving scenario. These models could potentially be
augmented by adding more modern approaches that would potentially increase the complexity

beyond the scope of this project or class.

1 Introduction

In a time of rapid automation of tasks to
reduce the amount of human labor, driving has
been a primary focus for data scientists and
deep learning engineers. Over the past decade,
there has been a vast increase in the interest in
autonomous vehicles due to the cost-
effectiveness of creating an alternative to
human drivers. One way the autonomous
driving field has been able to see such large-
scale improvements is the progress made in the
semantic segmentation of deep learning
models. Semantic segmentation is the ability
for a vehicular system to use visual input, either
images or videos, to classify the pixels of an
image based on the objects that it sees.
Fascinated by this concept of challenging a

computer’s intelligence to match that of a
complex human task, we decided to examine
semantic segmentation models firsthand to see
the success we could have in creating a system
to recognize its surroundings.

The first step in creating and testing a
model is finding a data source that has enough
data points while also provides enough useful
features for our model to process. We
examined three well-known datasets
commonly used to test autonomous driving
models: CityScapes [1], KITTI [2], and
nuScenes [3]. We decided to each investigate a
dataset and discuss our findings. It was clear
once we went over our results that KITTI was
the best dataset to pursue. While CityScapes
and nuScenes provided massive quantities of
data and in-depth classifications tags, loading
these datasets requires not only techniques and

nonstandard packages, but also a very long
loading time (several hours for the CityScapes
dataset, for example). On the other hand, the
KITTI dataset is much more usable. Not only
did it provide enough data (288 images for the
training set and 300 images for the test set), its
key targets are binary, meaning that each pixel
is labeled either road or not road, which is
easily trainable and testable for the scope of our
project.

Figure 1. CityScapes [1] Example Image

Figure 3. KITTI [2] Example Image

Overall, our goal was to use this KITTI
dataset and conclusively answer the question:
can we make a model with similar intelligence

to that of a human when it comes to recognizing
the roadway for a vehicle?

2 Models

For this task, we decided to investigate
the most common approaches taken for these
applications across multiple domains. We
found a specific subset of Convolution Neural
Networks (CNNs) that are specialized in the
unique problem of predicting each pixel of an
image and we decided to focus on three
categories of them: Fully Convolutional
Networks (FCNs) [4], U-Net [5], and SegNet
[6].

FCNs are a very popular and widely
used network architecture for the task of
semantic segmentation. As its name suggests,
all dominant layers of an FCN are
convolutional layers, which is also where it
differs significantly from most of the network
structures we covered in class (VGG16, for
example). For most CNN architecture, the last
several layers are usually fully connected, since
spatial information is no longer needed, and the
output of the last convolutional layer can be
flattened to a large vector. For FCN, however,
spatial information needs to be preserved as we
need to reconstruct the full image from those
layers. To do so, fully connected layers in CNN
models are replaced with convolutional layers
with a very small representation per channel
(usually 1x1). Another major difference
between FCN and the model we used in class is
the existence of upsampling and transposed
convolutional layers. Both are easy to
understand, as they are the opposite counterpart
of pooling and convolutional layers. These
layers help to reconstruct full resolution images
from the intermediate result of smaller but

ion (FCN-8s)

Figure 4. Network structure of FCN8, FCN16, and FCN32 [4]

deeper images produced
convolutional layers.

There exist several variants of FCN,
with the most common ones being FCN32,
FCN16, and FCNS8. The difference lies in how
many time upsampling is done in the
reconstructing part of the network, with FCN8
having at most 8 upsampling at once and
should, in theory, preserve more details of the
original images and yield a better result, and
FCN32 having at most 32 upsampling at once
and lose the most details from the original
images among its variants. UNet and SegNet
share the same components as FCNSs, both
adopted the upsampling layers and transposed
convolutional layers, but differ in the number
combination of how many convolutional,
pooling, upsampling, and transposed
convolutional layers they use, as well as how
results of lower-level pooling layers are used as

by previous

input
image | » >
tile

output
segmentation
map

> >

' I
4 o
. {
[]o{ro E*ﬂ’m =»conv 3x3, ReLU
1 copy and crop
EH:H:Q e e # max pool 2x2

+ 4 4 up-conv 2x2
el St S} oGO 5

Figure 6. Network structure of U-Net [5]

supplementary details to help reconstruct the
prediction images to their full resolution.

Convolutional Encoder-Decoder

Pooling Indices

I Conv + Batch Normalisation + ReLU
I Pooling I Upsampling Softmax

Figure 5. Network structure of SegNet [6]

3 Experiments

We performed 8 experiments using the
dataset with the models previously shown. The
models used in the experiments were FCNS,
FCN32, UNet, and SegNet. Each of these
models was used in two separate experiments,
with two models in a pair and tested for a
different purpose. For FCN8 and FCN32, we
tested the vanilla versions of them (without
pre-trained weight) and the versions using pre-
trained VGG16. For UNet and SegNet, we also
tested the vanilla versions but conducted
comparison experiments with different
optimizers, Adam and SGD, for each network
structure.

All experiments were done in 5 training
epochs, with 512 steps in each epoch and 2 as
the batch size (2 images per step). We split the
data of 288 images into 256 for training and 32
for testing, meaning that each training image is
used 4 times in an epoch. Testing images were

never used in the training process, thus should
have a good representation of how well the
model would perform on images it has never
seen. We kept the balance of the category of
images when splitting the training and test set.
All experiments were done on the GPU of
Gauss (Tesla K80), each using one GPU at a
time.

4 Results

4.1 Model complexity (this section
should go with Models)

Out of more four models we tested,
FCNB8 has the most layers (44) and FCN32 has
the least (34 layers). SegNet and UNet come in
between 38 and 42 layers respectively. When it
comes to the total number of parameters, FCNs
are significantly larger than SegNet and UNet,
with FCN32 having the most parameters
(339,204,736) and taking up the most VRAM
on GPU (about 11GB) and thus can only be run
on the K80 on Gauss. Same with FCN8, which
has 89,775,232 parameters, taking up about
8.6GB of VRAM. This is largely due to the
huge transposed convolutional layers in these
structures. For example, one transposed
convolutional layer in FCN32 has parameters
of shape (192,608,256), which by itself
producing more parameters (268,435,456) than
the whole SegNet or UNet model. SegNet and
UNet have much fewer parameters in contrast,
coming in at 3,844,160 and 4,618,304
respectively.

Model complexity comes not only in
the number of layers and parameters but also in
how layers are structured. This is where FCN8
and UNet are more complicated than SegNet
and FCN32. Both FCN8 and UNet have
concatenation layers, which neither SegNet nor
FCN32 has. These concatenation layers take

input from multiple layers, usually its previous
convolutional layer and an earlier pooling
layer, and concatenate or sum them to create
the input of the next block. This allows the
model to retrieve more details from earlier, less
compressed images and makes it easier to
reconstruct to the original resolution.

4.2 Model efficiency

Model efficiency can be evaluated with
training time and inference time. Training time
efficiency aligns very well with model
complexity evaluated on layers and parameters.
UNet and SegNet took only 184 seconds and
186 seconds per epoch as described above in
the experiment section, and FCN8 and FCN32
took 675 seconds and 845 seconds per epoch,
respectively. The total training time was about
18min for UNet and 19min for SegNet,
whereas for FCN8 and FCN32 training took
57min and 80min.

Model efficiency evaluated on
inference time during testing was also as
expected. UNet and SegNet were able to
conduct inferences for 3 input images per
second, and the number dropped to 0.86 for
FNC8 and 0.64 for FCN32.

4.3 Model accuracy

Model accuracy will be evaluated on
both training and testing accuracy. All four
models were able to achieve a decent training
accuracy of over 95%, with SegNet taking the
lead with 97.5% and FCNB8 taking the least with
96.5%. This is not exactly what we expected
based on analysis of these models, since FCNs
should typically produce a better result than
SegNet and UNet. One possible but unlikely
explanation is overfitting, but with much more
parameters FCNs should overfit easier than
SegNet and UNet and should in theory achieve

better training accuracy. An explanation for
this issue is the structure of the network since
although FCNs have more parameters than the
other two, its structure is relatively simpler and
would not overfit as quickly. We would
investigate this issue if we had more time.

Testing accuracy is exactly the opposite
of training accuracy, with FCN8 taking the lead
with 93.5% and SegNet taking the least with
90.5%. The result is what we expected: that
with enough training epochs FCNs (in
particular FCN8) would outperform UNet and
SegNet. All four models achieved over 90%
accuracy on new input images, making these
models quite usable for semantic segmentation
in autonomous driving.

TABLE 1
Results of each model where VGG versions of FCN
have the weights from said model frozen. SegNet and
UNet models were optimized using either SGD or

Adam.

road road mean Freq.

loU IoU IoU wtloU
FCNS8 81.8 959 889 935
FCN8 (VGG) 10.2 66.1 38.2 56.5
FCN32 77.6 952 86.4 92.2
FCN32 (VGG) 11.1 815 46.3 69.5
SegNet (SGD) 77.7 94.9 86.3 92.0
SegNet (Adam) 72.2 94.3 83.2 90.5
UNet (SGD) 72.6 94.2 83.4 905
UNet (Adam) 78.6 954 87.0 925

5 Conclusion

This project seemed to be significantly
more complex than any problem we had
encountered in this class, even more so than the
other image-based problems that we
considered for potential projects. This meant
we ran into complexity issues in multiple
locations, both in the time taken to load the

datasets and train the models, to the size
complexity of these models. We had multiple
issues with loading the CityScapes and
nuScenes datasets in an easy and time-efficient
way, with some datasets getting stuck loading
for over an hour. This meant we had to focus
on reducing the complexity of the dataset as
much as possible to allow us to achieve some
form of results. This was coupled with the
models that are required to accomplish
reasonable levels of accuracy in this domain.
Many of these highly respected and well-
known models that achieve high levels of
accuracy are very complex with specific
nuances to their construction and very large
weight sets. This presented unforeseen issues
with running on the servers at Rose-Hulman, as
these models were too large to run on any of the
GPUs other than those on Gauss, due to their
larger VRAM. This meant that the training was
slower due to the limitation of the older
graphics card as well as the fact that we were
only able to run two experiments at a time.

If we were to continue this project with
more time and resources, we would experiment
with other models and addons such as
autoencoders [7] or Recurrent Convolutional
Neural Networks (RCNNs) to move towards
more current cutting-edge approaches for
semantic segmentation. These would most
likely require higher levels of complexity that
is far outside of the scope that is feasible for
this class, and most likely outside the scope
based on our current understanding of deep
learning. Nevertheless, these additional
possibilities lend themselves well towards
pushing the limits of model accuracy as well as
bringing them closer and closer to being
commonplace in autonomous driving
applications.

6 References

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth
and B. Schiele, The Cityscapes Dataset for Semantic Urban Scene Understanding, 2016.

[2] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, "Vision Meets Robotics: The KITTI Dataset,"”
Int. J. Rob. Res., vol. 32, p. 1231-1237, 9 2013.
[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G.
Baldan and O. Beijbom, nuScenes: A multimodal dataset for autonomous driving, 2020.
[4]J. Long, E. Shelhamer and T. Darrell, Fully Convolutional Networks for Semantic
Segmentation, 2015.

[5] O. Ronneberger, P. Fischer and T. Brox, U-Net: Convolutional Networks for Biomedical
Image Segmentation, 2015.

[6] V. Badrinarayanan, A. Kendall and R. Cipolla, SegNet: A Deep Convolutional Encoder-
Decoder Architecture for Image Segmentation, 2016.

[7] M. A. Islam, M. Rochan, S. Naha, N. D. B. Bruce and Y. Wang, Gated Feedback Refinement
Network for Coarse-to-Fine Dense Semantic Image Labeling, 2018.

