
Road-Based Semantic Segmentation

Experimentation

Chris Comeau, Brevin Lacy, Max Wang

MA416

11/16/2020

Abstract

For our project, we focused on the problem of semantic segmentation with application to

autonomous driving. This entails classifying the pixels in an image based on the object that the

pixel is part of. We chose to use a simple dataset in this domain that focuses on the classification

of pixels in the image in a binary method: either the pixels are part of the road or they are not. We

were able to perform experimentation involving a few established models in the field of semantic

segmentation. We found that FCN8 resulted in the highest accuracy on the test set, but that UNet

and SegNet had similar performances with significantly lower inference time, potentially making

them more feasible to a real autonomous driving scenario. These models could potentially be

augmented by adding more modern approaches that would potentially increase the complexity

beyond the scope of this project or class.

1 Introduction

In a time of rapid automation of tasks to

reduce the amount of human labor, driving has

been a primary focus for data scientists and

deep learning engineers. Over the past decade,

there has been a vast increase in the interest in

autonomous vehicles due to the cost-

effectiveness of creating an alternative to

human drivers. One way the autonomous

driving field has been able to see such large-

scale improvements is the progress made in the

semantic segmentation of deep learning

models. Semantic segmentation is the ability

for a vehicular system to use visual input, either

images or videos, to classify the pixels of an

image based on the objects that it sees.

Fascinated by this concept of challenging a

computer’s intelligence to match that of a

complex human task, we decided to examine

semantic segmentation models firsthand to see

the success we could have in creating a system

to recognize its surroundings.

The first step in creating and testing a

model is finding a data source that has enough

data points while also provides enough useful

features for our model to process. We

examined three well-known datasets

commonly used to test autonomous driving

models: CityScapes [1], KITTI [2], and

nuScenes [3]. We decided to each investigate a

dataset and discuss our findings. It was clear

once we went over our results that KITTI was

the best dataset to pursue. While CityScapes

and nuScenes provided massive quantities of

data and in-depth classifications tags, loading

these datasets requires not only techniques and

nonstandard packages, but also a very long

loading time (several hours for the CityScapes

dataset, for example). On the other hand, the

KITTI dataset is much more usable. Not only

did it provide enough data (288 images for the

training set and 300 images for the test set), its

key targets are binary, meaning that each pixel

is labeled either road or not road, which is

easily trainable and testable for the scope of our

project.

Figure 1. CityScapes [1] Example Image

Figure 2. nuScenes [3] Example Image

Figure 3. KITTI [2] Example Image

 Overall, our goal was to use this KITTI

dataset and conclusively answer the question:

can we make a model with similar intelligence

to that of a human when it comes to recognizing

the roadway for a vehicle?

2 Models

For this task, we decided to investigate

the most common approaches taken for these

applications across multiple domains. We

found a specific subset of Convolution Neural

Networks (CNNs) that are specialized in the

unique problem of predicting each pixel of an

image and we decided to focus on three

categories of them: Fully Convolutional

Networks (FCNs) [4], U-Net [5], and SegNet

[6].

FCNs are a very popular and widely

used network architecture for the task of

semantic segmentation. As its name suggests,

all dominant layers of an FCN are

convolutional layers, which is also where it

differs significantly from most of the network

structures we covered in class (VGG16, for

example). For most CNN architecture, the last

several layers are usually fully connected, since

spatial information is no longer needed, and the

output of the last convolutional layer can be

flattened to a large vector. For FCN, however,

spatial information needs to be preserved as we

need to reconstruct the full image from those

layers. To do so, fully connected layers in CNN

models are replaced with convolutional layers

with a very small representation per channel

(usually 1x1). Another major difference

between FCN and the model we used in class is

the existence of upsampling and transposed

convolutional layers. Both are easy to

understand, as they are the opposite counterpart

of pooling and convolutional layers. These

layers help to reconstruct full resolution images

from the intermediate result of smaller but

deeper images produced by previous

convolutional layers.

There exist several variants of FCN,

with the most common ones being FCN32,

FCN16, and FCN8. The difference lies in how

many time upsampling is done in the

reconstructing part of the network, with FCN8

having at most 8 upsampling at once and

should, in theory, preserve more details of the

original images and yield a better result, and

FCN32 having at most 32 upsampling at once

and lose the most details from the original

images among its variants. UNet and SegNet

share the same components as FCNs, both

adopted the upsampling layers and transposed

convolutional layers, but differ in the number

combination of how many convolutional,

pooling, upsampling, and transposed

convolutional layers they use, as well as how

results of lower-level pooling layers are used as

supplementary details to help reconstruct the

prediction images to their full resolution.

Figure 5. Network structure of SegNet [6]

3 Experiments

We performed 8 experiments using the

dataset with the models previously shown. The

models used in the experiments were FCN8,

FCN32, UNet, and SegNet. Each of these

models was used in two separate experiments,

with two models in a pair and tested for a

different purpose. For FCN8 and FCN32, we

tested the vanilla versions of them (without

pre-trained weight) and the versions using pre-

trained VGG16. For UNet and SegNet, we also

tested the vanilla versions but conducted

comparison experiments with different

optimizers, Adam and SGD, for each network

structure.

All experiments were done in 5 training

epochs, with 512 steps in each epoch and 2 as

the batch size (2 images per step). We split the

data of 288 images into 256 for training and 32

for testing, meaning that each training image is

used 4 times in an epoch. Testing images were

Figure 4. Network structure of FCN8, FCN16, and FCN32 [4]

Figure 6. Network structure of U-Net [5]

never used in the training process, thus should

have a good representation of how well the

model would perform on images it has never

seen. We kept the balance of the category of

images when splitting the training and test set.

All experiments were done on the GPU of

Gauss (Tesla K80), each using one GPU at a

time.

4 Results

4.1 Model complexity (this section

should go with Models)

Out of more four models we tested,

FCN8 has the most layers (44) and FCN32 has

the least (34 layers). SegNet and UNet come in

between 38 and 42 layers respectively. When it

comes to the total number of parameters, FCNs

are significantly larger than SegNet and UNet,

with FCN32 having the most parameters

(339,204,736) and taking up the most VRAM

on GPU (about 11GB) and thus can only be run

on the K80 on Gauss. Same with FCN8, which

has 89,775,232 parameters, taking up about

8.6GB of VRAM. This is largely due to the

huge transposed convolutional layers in these

structures. For example, one transposed

convolutional layer in FCN32 has parameters

of shape (192,608,256), which by itself

producing more parameters (268,435,456) than

the whole SegNet or UNet model. SegNet and

UNet have much fewer parameters in contrast,

coming in at 3,844,160 and 4,618,304

respectively.

Model complexity comes not only in

the number of layers and parameters but also in

how layers are structured. This is where FCN8

and UNet are more complicated than SegNet

and FCN32. Both FCN8 and UNet have

concatenation layers, which neither SegNet nor

FCN32 has. These concatenation layers take

input from multiple layers, usually its previous

convolutional layer and an earlier pooling

layer, and concatenate or sum them to create

the input of the next block. This allows the

model to retrieve more details from earlier, less

compressed images and makes it easier to

reconstruct to the original resolution.

4.2 Model efficiency

Model efficiency can be evaluated with

training time and inference time. Training time

efficiency aligns very well with model

complexity evaluated on layers and parameters.

UNet and SegNet took only 184 seconds and

186 seconds per epoch as described above in

the experiment section, and FCN8 and FCN32

took 675 seconds and 845 seconds per epoch,

respectively. The total training time was about

18min for UNet and 19min for SegNet,

whereas for FCN8 and FCN32 training took

57min and 80min.

Model efficiency evaluated on

inference time during testing was also as

expected. UNet and SegNet were able to

conduct inferences for 3 input images per

second, and the number dropped to 0.86 for

FNC8 and 0.64 for FCN32.

4.3 Model accuracy

Model accuracy will be evaluated on

both training and testing accuracy. All four

models were able to achieve a decent training

accuracy of over 95%, with SegNet taking the

lead with 97.5% and FCN8 taking the least with

96.5%. This is not exactly what we expected

based on analysis of these models, since FCNs

should typically produce a better result than

SegNet and UNet. One possible but unlikely

explanation is overfitting, but with much more

parameters FCNs should overfit easier than

SegNet and UNet and should in theory achieve

better training accuracy. An explanation for

this issue is the structure of the network since

although FCNs have more parameters than the

other two, its structure is relatively simpler and

would not overfit as quickly. We would

investigate this issue if we had more time.

Testing accuracy is exactly the opposite

of training accuracy, with FCN8 taking the lead

with 93.5% and SegNet taking the least with

90.5%. The result is what we expected: that

with enough training epochs FCNs (in

particular FCN8) would outperform UNet and

SegNet. All four models achieved over 90%

accuracy on new input images, making these

models quite usable for semantic segmentation

in autonomous driving.

TABLE 1

Results of each model where VGG versions of FCN

have the weights from said model frozen. SegNet and

UNet models were optimized using either SGD or

Adam.

 road

IoU

road

IoU

mean

IoU

Freq.

wt IoU

FCN8 81.8 95.9 88.9 93.5

FCN8 (VGG) 10.2 66.1 38.2 56.5

FCN32 77.6 95.2 86.4 92.2

FCN32 (VGG) 11.1 81.5 46.3 69.5

SegNet (SGD) 77.7 94.9 86.3 92.0

SegNet (Adam) 72.2 94.3 83.2 90.5

UNet (SGD) 72.6 94.2 83.4 90.5

UNet (Adam) 78.6 95.4 87.0 92.5

5 Conclusion

This project seemed to be significantly

more complex than any problem we had

encountered in this class, even more so than the

other image-based problems that we

considered for potential projects. This meant

we ran into complexity issues in multiple

locations, both in the time taken to load the

datasets and train the models, to the size

complexity of these models. We had multiple

issues with loading the CityScapes and

nuScenes datasets in an easy and time-efficient

way, with some datasets getting stuck loading

for over an hour. This meant we had to focus

on reducing the complexity of the dataset as

much as possible to allow us to achieve some

form of results. This was coupled with the

models that are required to accomplish

reasonable levels of accuracy in this domain.

Many of these highly respected and well-

known models that achieve high levels of

accuracy are very complex with specific

nuances to their construction and very large

weight sets. This presented unforeseen issues

with running on the servers at Rose-Hulman, as

these models were too large to run on any of the

GPUs other than those on Gauss, due to their

larger VRAM. This meant that the training was

slower due to the limitation of the older

graphics card as well as the fact that we were

only able to run two experiments at a time.

If we were to continue this project with

more time and resources, we would experiment

with other models and addons such as

autoencoders [7] or Recurrent Convolutional

Neural Networks (RCNNs) to move towards

more current cutting-edge approaches for

semantic segmentation. These would most

likely require higher levels of complexity that

is far outside of the scope that is feasible for

this class, and most likely outside the scope

based on our current understanding of deep

learning. Nevertheless, these additional

possibilities lend themselves well towards

pushing the limits of model accuracy as well as

bringing them closer and closer to being

commonplace in autonomous driving

applications.

6 References

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth

and B. Schiele, The Cityscapes Dataset for Semantic Urban Scene Understanding, 2016.

[2] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, "Vision Meets Robotics: The KITTI Dataset,"

Int. J. Rob. Res., vol. 32, p. 1231–1237, 9 2013.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G.

Baldan and O. Beijbom, nuScenes: A multimodal dataset for autonomous driving, 2020.

[4] J. Long, E. Shelhamer and T. Darrell, Fully Convolutional Networks for Semantic

Segmentation, 2015.

[5] O. Ronneberger, P. Fischer and T. Brox, U-Net: Convolutional Networks for Biomedical

Image Segmentation, 2015.

[6] V. Badrinarayanan, A. Kendall and R. Cipolla, SegNet: A Deep Convolutional Encoder-

Decoder Architecture for Image Segmentation, 2016.

[7] M. A. Islam, M. Rochan, S. Naha, N. D. B. Bruce and Y. Wang, Gated Feedback Refinement

Network for Coarse-to-Fine Dense Semantic Image Labeling, 2018.

