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Abstract

Deep learning is a method of machine learning that uses multiple layers to automate the
process of feature extraction from inputs. It has been applied in various fields, including
image recognition and text analysis. For our project, we proposed a hand gesture emojinator
recognitor, which takes a real-time hand image as the input and gives the predicted emoiji as
the output. In the training process, we applied the Convolutional neural network and VGG16.
After adjusting the hyper-parameters, we get the training accuracy 1.00 and test accuracy
0.99.

1. Introduction

Deep learning is currently a hot topic in Machine Learning and is also an essential tool in the
field of Artificial Intelligence. Deep Learning is good at doing image recognition, object
detection, natural language translation, trend prediction. Emoiji is a visual symbol widely
used in wireless communication. It includes faces, hand gestures, animals, human figures,
and signs. Instead of typographic, emoiji are actual pictures. As there are increasing uses of
emojis, the needs for an instant generator of emojis have become urgent. With the promising
results of image recognition tasks by some deep learning models, we propose a real-time
emoji generator, which enables the user to generate an emoji given a corresponding human
hand gesture. In this work, we applied multiple deep learning models to perform feature
extraction and pre-processed our data with data augmentation strategies and morphology
operations.

2. Dataset

Our dataset is from the project on GitHub[1], which contains the training images and target
emojis. In this project, we want to train our model to make it able to recognize the eleven
emojis, and the sample of target (output) images and training images are shown in Figure 1
and Figure 2. For each of the emaji, there are 1,200 corresponding pixel style training
images, which guarantee the balance of our training set. After the training process, we use a
webcam to capture real-time hand gestures and process it to the pixel style images and
make real-time predictions.
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Figure 1. Sample of Target Image Figure 2. Sample of Training Image

2.1 Pre-processing

We found that the model we trained could not perfectly identify the hand gesture during our
intermediate test. The initial idea we had was that the dataset only contains the left-hand
gestures, which led to failures when recognizing right-hand gestures. We used
ImageDataGenerator horizontal flip to get the other copy of the dataset, except it is all
right-hand gestures this time. The result showed significant improvement, but it remained
some problems. We realized that it is not realistic that we can always put our hands in the
perfect position in the detected area. Therefore, we used horizontal and vertical shift and set
the rotation_range to 10 and recursively combine all the results from ImageDataGenerator
as a single training set to the model. We later found that the model performs well on the
hands that look identical to the ones in the training dataset but performs poorly when the
hands differ too much with the training dataset, i.e., longer ring fingers.

3. Models
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Figure 3: Workflow of the Model




3.1 Morphology Operation

Once we had the input image from the plug-in web camera, the first thing we needed to do
was to unify the size of input images. Hence, we shrunk from 400*400 to 50*50 to match the
resolution of the dataset. Furthermore, to match the input format of our model, which was
trained by monochrome images, we filtered images by skin color range to convert to a
black-white mask.

Moreover, we could not promise that if the background was clear enough to capture hand
gestures without noises or little noises. We first want to ensure that the shape of the hand
was correct, so we choose to erode it first.

After we gained general shapes of hand gestures, we erode the input image by using large
square 2 and dilated the image to get the relatively correct hand gesture using a large
square 7.

To improve the accuracy of our system, we then blurred the images to arrive at our final
input features using GaussianBlur.
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Figure 4: Input image directly from web-cam Figure 5: Input image after morphology operation

3.2 Convolutional Neural Network

Our model uses the model of the convolutional neural network. It consists of convolutional
layers, RelLu layers, and max-pooling layers. For our model, we have two sets of
convolutional layers, ReLu layers, and max-pooling layers. After that, we put a
fully-connected layer, a RelLu layer, and a softmax layer to predict the label. The model
structure is in Figure 6. We have tried different sets of layers, and it turned out that the
model in Figure 6 works the best.



Model: "sequential”

Layer (type) Output Shape Param
comad (o)  (Nome, 5o, 50, 20)  s20
max_pooling2d (MaxPooling2D) (Mone, 25, 25, 28) 2]

convad_1 (Conv2D) (None, 25, 25, 50) 25050
max_pooling2d_1 (MaxPocoling2 (MNone, 12, 12, 58) 2]

flatten (Flatten) (Hone, 7208) 2]

dense (Dense) (None, 568@) 3600500
dense_1 (Dense) (MNone, 12) 6012

Total params: 3,632,082
Trainable params: 3,632,082
Non-trainable params: @

Figure 6: CNN Model Structure

4. Results

We applied our model to the input hand gestures dataset. We had a very promising result:
Both training accuracy and validation accuracy are both close to 1 (0.996, etc.), and both
training loss converges to 0 after the training process is finished. The following are the

learning curves of our training model.
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Figure 7: Accuracy vs Epoch
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Figure 8: Loss vs Epoch

From the two graphs, we can see that the model converges very fast. During the first several
epochs, the accuracy increases rapidly and reaches 1 around 20 epochs. The loss
decreases to 0 around the same time. However, when we are testing our model in real-time
instead of using static hand gesture images, the performance of the model is not stable. One
reason is that the skin color range does not capture all parts of the hand due to the influence
of light. The second reason is that we have to put the hand at the exact position in the frame
as the position of the hand in the training images. Sometimes, it misclassifies hand gestures.
However, if we adjust the position of our hand gestures, most of the time, our model will

predict the right labels.



5. Conclusion

For this project, we get pretty good test scores, that the accuracy rate is close to 1.0. Deep
learning is pretty good at image recognition, and the result reflects that. Although the
accuracy is already 1, there are a couple of things that we can do to improve our model.
First, we can test to find a better set of light sources and resolution of input images. For
example, applying semantic segmentation pre-trained models with a label of lights will
significantly reduce the unnecessary noise in our dataset. Second, we can use multiple
snapshots from consecutive frames as input. From multiple label output, we can take the
majority of the output labels as the final output label. Last but not least, we will want to
include more datasets containing different sizes of hands to ensure our model can adapt to
various hand shapes.
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