
 

 
 
 
 
 
 
 
Emojinator Recognition and Prediction 

Xiangbei Chen, Song Luo, Ming Lyu, Chen Yin 
Nov 20, 2019 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 



 

Table of Content 
 

Table of Content 2 

Abstract 2 

1. Introduction 3 

2. Dataset 3 
2.1 Pre-processing 4 
3.1 Morphology Operation 4 
3.2 Convolutional Neural Network 5 

4. Results 6 

5. Conclusion 7 

References: 7 
 

 

 

 

 

 

 

 
 

 
 

2 



 

Abstract 
Deep learning is a method of machine learning that uses multiple layers to automate the 
process of feature extraction from inputs. It has been applied in various fields, including 
image recognition and text analysis. For our project, we proposed a hand gesture emojinator 
recognitor, which takes a real-time hand image as the input and gives the predicted emoji as 
the output. In the training process, we applied the Convolutional neural network and VGG16. 
After adjusting the hyper-parameters, we get the training accuracy 1.00 and test accuracy 
0.99.  
 

1. Introduction 
Deep learning is currently a hot topic in Machine Learning and is also an essential tool in the 
field of Artificial Intelligence. Deep Learning is good at doing image recognition, object 
detection, natural language translation, trend prediction. Emoji is a visual symbol widely 
used in wireless communication. It includes faces, hand gestures, animals, human figures, 
and signs. Instead of typographic, emoji are actual pictures. As there are increasing uses of 
emojis, the needs for an instant generator of emojis have become urgent. With the promising 
results of image recognition tasks by some deep learning models, we propose a real-time 
emoji generator, which enables the user to generate an emoji given a corresponding human 
hand gesture. In this work, we applied multiple deep learning models to perform feature 
extraction and pre-processed our data with data augmentation strategies and morphology 
operations.  
 

2. Dataset 
Our dataset is from the project on GitHub[1], which contains the training images and target 
emojis. In this project, we want to train our model to make it able to recognize the eleven 
emojis, and the sample of target (output) images and training images are shown in Figure 1 
and Figure 2. For each of the emoji, there are 1,200 corresponding pixel style training 
images, which guarantee the balance of our training set. After the training process, we use a 
webcam to capture real-time hand gestures and process it to the pixel style images and 
make real-time predictions. 

3 



 

 
Figure 1. Sample of Target Image Figure 2. Sample of Training Image 
 
 

2.1 Pre-processing 
 
We found that the model we trained could not perfectly identify the hand gesture during our 
intermediate test. The initial idea we had was that the dataset only contains the left-hand 
gestures, which led to failures when recognizing right-hand gestures. We used 
ImageDataGenerator horizontal flip to get the other copy of the dataset, except it is all 
right-hand gestures this time. The result showed significant improvement, but it remained 
some problems. We realized that it is not realistic that we can always put our hands in the 
perfect position in the detected area. Therefore, we used horizontal and vertical shift and set 
the rotation_range to 10 and recursively combine all the results from ImageDataGenerator 
as a single training set to the model. We later found that the model performs well on the 
hands that look identical to the ones in the training dataset but performs poorly when the 
hands differ too much with the training dataset, i.e., longer ring fingers.  
 
 

3. Models 
 

 
Figure 3: Workflow of the Model 

4 



 

 

3.1 Morphology Operation 
 
Once we had the input image from the plug-in web camera, the first thing we needed to do 
was to unify the size of input images. Hence, we shrunk from 400*400 to 50*50 to match the 
resolution of the dataset. Furthermore, to match the input format of our model, which was 
trained by monochrome images, we filtered images by skin color range to convert to a 
black-white mask.  
Moreover, we could not promise that if the background was clear enough to capture hand 
gestures without noises or little noises. We first want to ensure that the shape of the hand 
was correct, so we choose to erode it first.  
After we gained general shapes of hand gestures, we erode the input image by using large 
square 2 and dilated the image to get the relatively correct hand gesture using a large 
square 7.  
To improve the accuracy of our system, we then blurred the images to arrive at our final 
input features using GaussianBlur. 
 
  

   
        Figure 4: Input image directly from web-cam              Figure 5: Input image after morphology operation 
 

 
 
3.2 Convolutional Neural Network 
 
Our model uses the model of the convolutional neural network. It consists of convolutional 
layers, ReLu layers, and max-pooling layers. For our model, we have two sets of 
convolutional layers, ReLu layers, and max-pooling layers. After that, we put a 
fully-connected layer, a ReLu layer, and a softmax layer to predict the label. The model 
structure is in Figure 6. We have tried different sets of layers, and it turned out that the 
model in Figure 6 works the best. 

5 



 

 

 
Figure 6: CNN Model Structure 

4. Results 
We applied our model to the input hand gestures dataset. We had a very promising result: 
Both training accuracy and validation accuracy are both close to 1 (0.996, etc.), and both 
training loss converges to 0 after the training process is finished. The following are the 
learning curves of our training model.  

 
 

Figure 7: Accuracy vs Epoch                                                          Figure 8: Loss vs Epoch 
 
From the two graphs, we can see that the model converges very fast. During the first several 
epochs, the accuracy increases rapidly and reaches 1 around 20 epochs. The loss 
decreases to 0 around the same time. However, when we are testing our model in real-time 
instead of using static hand gesture images, the performance of the model is not stable. One 
reason is that the skin color range does not capture all parts of the hand due to the influence 
of light. The second reason is that we have to put the hand at the exact position in the frame 
as the position of the hand in the training images. Sometimes, it misclassifies hand gestures. 
However, if we adjust the position of our hand gestures, most of the time, our model will 
predict the right labels.  

6 



 

5. Conclusion 
For this project, we get pretty good test scores, that the accuracy rate is close to 1.0. Deep 
learning is pretty good at image recognition, and the result reflects that. Although the 
accuracy is already 1, there are a couple of things that we can do to improve our model. 
First, we can test to find a better set of light sources and resolution of input images. For 
example, applying semantic segmentation pre-trained models with a label of lights will 
significantly reduce the unnecessary noise in our dataset. Second, we can use multiple 
snapshots from consecutive frames as input. From multiple label output, we can take the 
majority of the output labels as the final output label. Last but not least, we will want to 
include more datasets containing different sizes of hands to ensure our model can adapt to 
various hand shapes. 
 
 
 

References: 
[1] ​akshaybahadur21. “akshaybahadur21/Emojinator.” ​GitHub​, 3 Apr. 2019, 
https://github.com/akshaybahadur21/Emojinator​. 
 
 

7 

https://github.com/akshaybahadur21/Emojinator

