
Malaria Vectors

Science, Vol. 347, Iss. 6217, Jan. 2, 2015.

Highly evolvable malaria vectors: The genomes of 16 *Anopheles* mosquitoes

Daniel E. Neafsey,^{1,6,†} Robert M. Waterhouse,^{2,3,4,5,*} Mohammad R. Abai,⁶ Sergey S. Aganayev,⁷ Max A. Alekseyev,⁷ James E. Allen,⁸ James Amon,⁹ Bruno Arcà,¹⁰ Peter Arensburger,¹¹ Gleb Artemov,¹² Lauren A. Assour,¹³ Hamidreza Basseri,⁶ Aaron Berlin,¹ Bruce W. Birren,¹ Stephanie A. Blandin,^{14,15} Andrew I. Brockman,¹⁶ Thomas R. Burkot,¹⁷ Austin Burt,¹⁸ Clara S. Chan,^{2,3} Cedric Chauve,¹⁹ Joanna C. Chiu,²⁰ Mikkel Christensen,⁸ Austin Constantini,²¹ Victoria L. M. Davidson,²² Elena Deligianni,²³ Tania Dottorini,¹⁶ Vicki Dritsou,²⁴ Stacey B. Gabriel,²⁵ Wamdaogo M. Guelbeogo,²⁶ Andrew B. Hall,²⁷ Mira V. Han,²⁸ Thaung Hlaing,²⁹ Daniel S. T. Hughes,^{5,30} Adam M. Jenkins,³¹ Xiaofang Jiang,^{32,27} Irwin Jungreis,^{2,3} Evodiaxa G. Kakani,^{33,34} Maryam Kamali,³⁵ Petri Kemppainen,³⁶ Ryan C. Kennedy,³⁷ Ioannis K. Kirmizoglou,^{16,38} Lizette L. Koekemoer,³⁹ Njoroge Laban,⁴⁰ Nicholas Langridge,⁸ Mara K. N. Lawrieckzak,¹⁶ Manolis Lirakis,⁴¹ Neil F. Lobo,⁴² Ernesto Lowy,⁸ Robert M. MacCallum,¹⁶ Chunhong Mao,⁴³ Gareth Maslen,⁸ Charles Mbogo,⁴⁴ Jenny McCarthy,¹¹ Kristin Michel,²² Sara N. Mitchell,³³ Wendy Moore,⁴⁵ Katherine A. Murphy,²⁰ Anastasia N. Naumenko,³⁵ Tony Nolan,¹⁶ Eva M. Novoa,^{2,3} Samantha O'Loughlin,¹⁸ Chioma Oringanje,⁴⁵ Mohammad A. Oshagh, ⁶ Nazy Pakpour,⁴⁶ Philippos A. Papathanos,^{16,24} Ashley N. Peery,³⁵ Michael Povelones,⁴⁷ Anil Prakash,⁴⁸ David P. Price,^{49,50} Ashok Rajaraman,¹⁹ Lisa J. Reimer,⁵¹ David C. Rinker,⁵² Antonis Rokas,^{52,53} Tanya L. Russell,¹⁷ N'Fale Sagnon,²⁶ Maria V. Sharakhova,³⁵ Terrance Shea,¹ Felipe A. Simão,^{4,5} Frederic Simard,²¹ Michel A. Slotman,⁵⁴ Pradya Somboon,⁵⁵ Vladimir Stegniy,¹² Claudio J. Struchiner,^{56,57} Gregg W. C. Thomas,⁵⁸ Marta Tojo,⁵⁹ Pantelis Topalis,²³ José M. C. Tubio,⁶⁰ Maria F. Unger,⁴² John Vontas,⁴¹ Catherine Walton,³⁶ Craig S. Wilding,⁶¹ Judith H. Willis,⁶² Yi-Chieh Wu,^{2,3,63} Guiyun Yan,⁶⁴ Evgeny M. Zdobnov,^{4,5} Xiaofan Zhou,⁵³ Flaminia Catteruccia,^{33,34} George K. Christophides,¹⁶ Frank H. Collins,⁴² Robert S. Cormran,⁶² Andrea Crisanti,^{16,24} Martin J. Donnelly,^{51,65} Scott J. Enrich,¹³ Michael C. Fontaine,^{42,66} William Gelbart,⁶⁷ Matthew W. Hahn,^{48,58} Immo A. Hansen,^{49,50} Paul I. Howell,⁶⁹ Fotis C. Kafatos,¹⁶ Manolis Kellis,^{2,3} Daniel Lawson,⁸ Christos Louis,^{41,23,24} Shirley Luckhart,⁴⁶ Marc A. T. Muskavitch,^{31,70} José M. Ribeiro,⁷¹ Michael A. Riehle,⁴⁵ Igor V. Sharakhov,^{35,27} Zhijian Tu,^{27,32} Laurence J. Zwiebel,⁷² Nora J. Besansky^{42,†}

Malaria Vectors

Background

- Human malaria is caused by five species of the *Plasmodium* parasite and is only transmitted by approximately 60 of the 450 known species of *Anopheles* mosquito.

Background

- Human malaria is caused by five species of the *Plasmodium* parasite and is only transmitted by approximately 60 of the 450 known species of *Anopheles* mosquito.
- Vector capacity is governed by mosquito behavior, mosquito parasite immunity and mosquito life history.

Background

- Human malaria is caused by five species of the *Plasmodium* parasite and is only transmitted by approximately 60 of the 450 known species of *Anopheles* mosquito.
- Vector capacity is governed by mosquito behavior, mosquito parasite immunity and mosquito life history.
- Compared to *Drosophila* (fruit fly), *Anopheles* has a five-fold faster rate of gene gain/loss.

Conclusion

The genomes of the Anopheles mosquito harbor strong evidence of functional variations in traits that determine vectorial capacity.

Examples of Species Adaptations

- *Anopheles quadriannulatus* is vector capable but does not transmit malaria to humans because it prefers to feed on cows.

Examples of Species Adaptations

- *Anopheles quadriannulatus* is vector capable but does not transmit malaria to humans because it prefers to feed on cows.
- *Anopheles merus, melas, farauti, albumannus* females can lay eggs in salty/brackish water.

Evolution of *Anopheles*

- Unlike *Drosophila*, *Anopheles* has uniform codon usage.

Evolution of *Anopheles*

- Unlike *Drosophila*, *Anopheles* has uniform codon usage.
- *Anopheles* has more intron loss than *Drosophila*.

Evolution of *Anopheles*

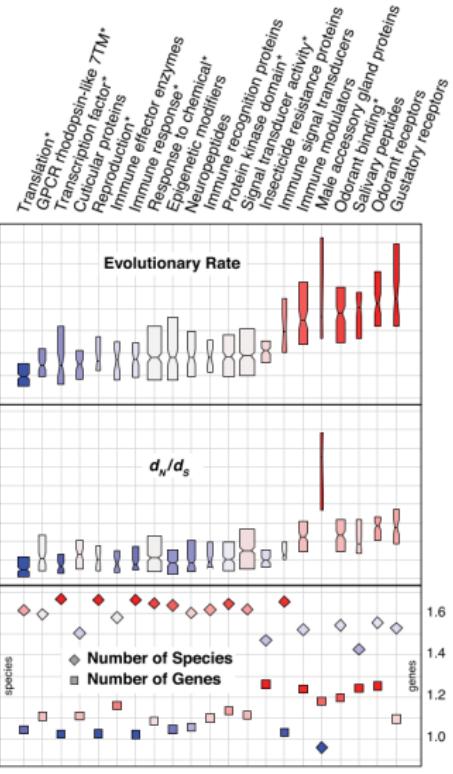
- Unlike *Drosophila*, *Anopheles* has uniform codon usage.
- *Anopheles* has more intron loss than *Drosophila*.
- Gene fusion and fission have played a substantial role in the evolution of *Anopheles* genes.

Evolution of *Anopheles*

- Unlike *Drosophila*, *Anopheles* has uniform codon usage.
- *Anopheles* has more intron loss than *Drosophila*.
- Gene fusion and fission have played a substantial role in the evolution of *Anopheles* genes.
- Odorant and gustatory receptors show high evolutionary rates.

Evolution of *Anopheles*

- Unlike *Drosophila*, *Anopheles* has uniform codon usage.
- *Anopheles* has more intron loss than *Drosophila*.
- Gene fusion and fission have played a substantial role in the evolution of *Anopheles* genes.
- Odorant and gustatory receptors show high evolutionary rates.
- Male accessory gland proteins show exceptionally high selection pressure.


Evolution of *Anopheles*

- Unlike *Drosophila*, *Anopheles* has uniform codon usage.
- *Anopheles* has more intron loss than *Drosophila*.
- Gene fusion and fission have played a substantial role in the evolution of *Anopheles* genes.
- Odorant and gustatory receptors show high evolutionary rates.
- Male accessory gland proteins show exceptionally high selection pressure.
- Salivary genes have highest positively selected codons indicating coevolution with vertebrate host of the salivary proteomes.

Evolution of *Anopheles*

- Unlike *Drosophila*, *Anopheles* has uniform codon usage.
- *Anopheles* has more intron loss than *Drosophila*.
- Gene fusion and fission have played a substantial role in the evolution of *Anopheles* genes.
- Odorant and gustatory receptors show high evolutionary rates.
- Male accessory gland proteins show exceptionally high selection pressure.
- Salivary genes have highest positively selected codons indicating coevolution with vertebrate host of the salivary proteomes.
- Orthologs of genes associated with insecticide resistance found in all *Anopheles* species suggesting that all species capable of developing insecticide resistance through similar mechanisms.

Evolution of *Anopheles*

Anopheles and Insulin

- Four insulin-like peptides are found in all *Anopheles* species.

Anopheles and Insulin

- Four insulin-like peptides are found in all *Anopheles* species.
- No ortholog of insulin growth factor 1 (IGF1) was found in any *Anopheles* species.

Anopheles and Insulin

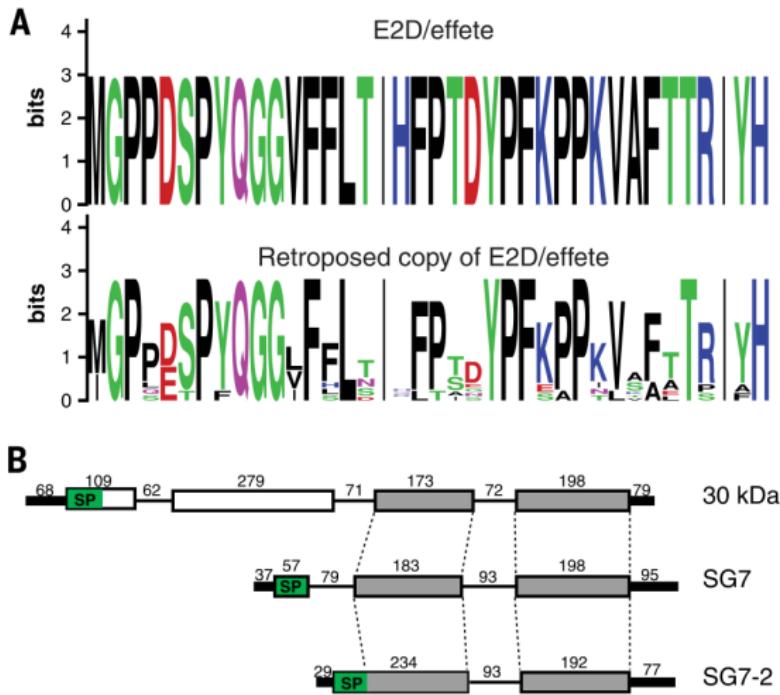
- Four insulin-like peptides are found in all *Anopheles* species.
- No ortholog of insulin growth factor 1 (IGF1) was found in any *Anopheles* species.
- IGF1 is a key component of insulin/insulin growth factor 1 signaling (IIS) cascade, regulating innate immunity, reproduction, metabolism and life span.

Anopheles and Insulin

- Four insulin-like peptides are found in all *Anopheles* species.
- No ortholog of insulin growth factor 1 (IGF1) was found in any *Anopheles* species.
- IGF1 is a key component of insulin/insulin growth factor 1 signaling (IIS) cascade, regulating innate immunity, reproduction, metabolism and life span.
- IGF1 is present in other dipterans, including *Drosophila melanogaster* and *Ae. aegypti*.

Immunity to *Plasmodium*

- Recognition genes and effector enzymes genes have relatively low levels of sequence divergence.


Immunity to *Plasmodium*

- Recognition genes and effector enzymes genes have relatively low levels of sequence divergence.
- Signal transducers are conserved in representation and rarely duplicated, but are more divergent in sequence.

Immunity to *Plasmodium*

- Recognition genes and effector enzymes genes have relatively low levels of sequence divergence.
- Signal transducers are conserved in representation and rarely duplicated, but are more divergent in sequence.
- Cascade modulators are divergent and generally have more gene duplication, but are also more lineage-specific.

Creation of New Genes

