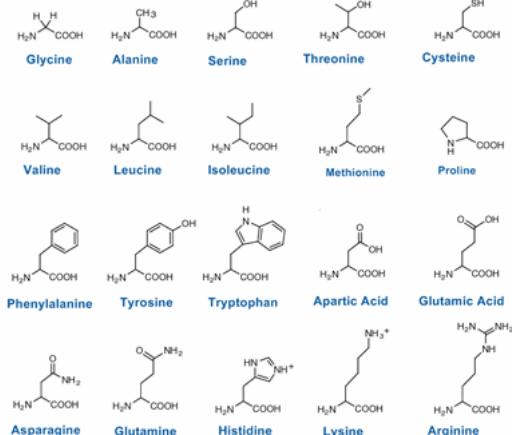


1 Central Dogma of Biology


1 Definition (The Cell)

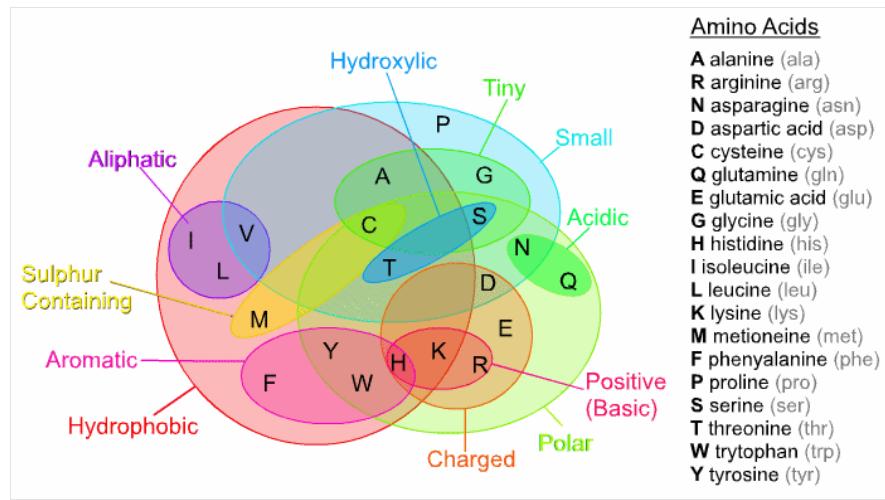
5 Definition (Amino Acids)

Ala	Arg	Asn	Asp	Cys	Glu	Gln	Gly	His	Ile
A	R	N	D	C	E	Q	G	H	I
<u>Leu</u>	<u>Lys</u>	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val
L	K	M	F	P	S	T	W	Y	V

6 Example (Amino Acid Structures)

2 Definition (The Cell)

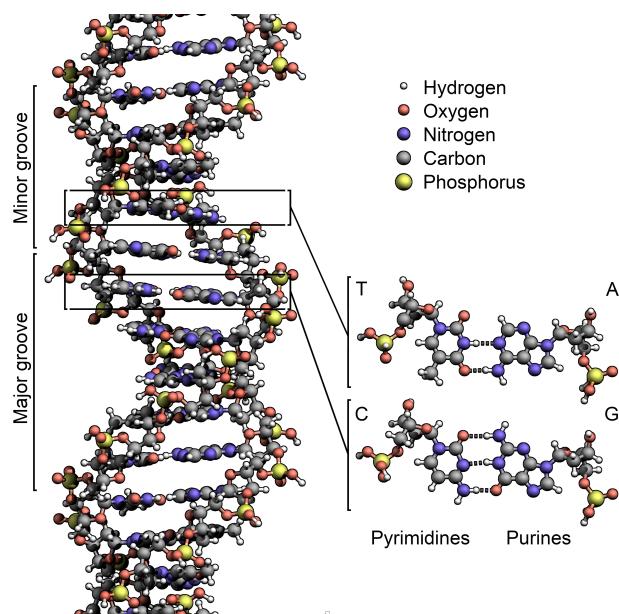
- single cell organisms
- multi cell organisms

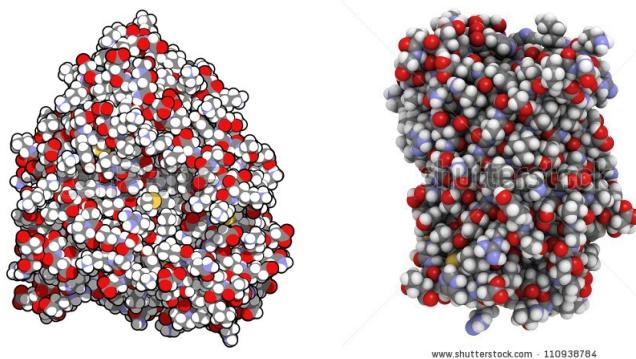

3 Definition (The Cell)

- prokaryotes
- eukaryotes

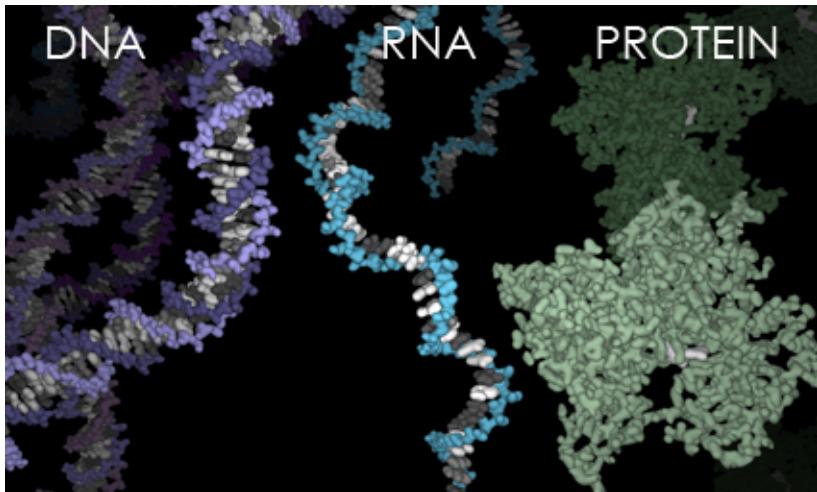
4 Definition (Nucleic Acids)

- DNA: A T G C
- RNA: A U G C


7 Example (Amino Acid Properties)


9 Definition (tRNA Molecule)

8 Definition (DNA Molecule)



10 Definition (Protein Molecules)

www.shutterstock.com · 110938784

11 Definition (DNA vs RNA vs Protein Molecule)

12 Definition (Genetic Code)

Genetic Code												
First Position	Second Position				Third Position				T	C	A	G
	T	C	A	G	T	C	A	G				
T	TTT	Phe	TAT	Tyr	TGT	Cys			T			
	TTC	Phe	TTC	Ser	TGC	Cys			C			
	TTA	Leu	TCC	Ser	TAC	Tyr			A			
	TTG	Leu	TCA	Ser	TAA	Stop	TGA	Stop	G			
C	CTT	Leu	CCT	Pro	CAT	His	CGT	Arg	T			
	CTC	Leu	CCC	Pro	CAC	His	CGC	Arg	C			
	CTA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	A			
	CTG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G			
A	ATT	Ile	ACT	Thr	AAT	Asn	AGT	Ser	T			
	ATC	Ile	ACC	Thr	AAC	Asn	AGC	Ser	C			
	ATA	Ile	ACA	Thr	AAA	Lys	AGA	Arg	A			
	ATG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G			
G	GTT	Val	GCT	Ala	GAT	Asp	GGT	Gly	T			
	GTC	Val	GCC	Ala	GAC	Asp	GGC	Gly	C			
	GTA	Val	GCA	Ala	GAA	Glu	GGA	Gly	A			
	GTG	Val	GCG	Ala	GAG	Glu	GGG	Gly	G			

13 Definition (Genes)

Genes are segments of DNA that are transcribed and translated into a protein sequence. Splicing may be required.

- codon: group of three nucleic acids that code for a single amino acid.
- introns: portions of a gene that are removed before translation.
- exons: portions of a gene that are spliced before translation.

3 Lesson (DNA Transcription and Translation)

The following cDNA sequence contains the beginning of the gene that codes for the human insulin protein.

TGCCTGTCTCCCAGATCACT
GTCCTTCTGCCATGGCCCTG
TGGATGCGCCTCCTGCC

(a) Determine the sequence of cDNA that codes for the first nine letters of the insulin protein sequence.

Solution:

(b) Determine the sequence of mRNA that codes for the first nine letters of the insulin protein sequence.

Solution:

(c) Determine the first nine letters of the insulin protein sequence.

Solution:

Because it takes three letters of a DNA sequence to translate to a single letter of a protein sequence, where we start the translation in the DNA sequence has a big effect on the resulting protein sequence. In other words, we have to choose the correct **reading frame** before we attempt to translate a DNA sequence into a protein sequence. Reading frames which start with the start codon ATG are called **open reading frames**.

4 Lesson (Open Reading Frames)

Determine three of the six possible translations of the following segment of cDNA.

T A T A G G G A C T C A

Solution:

1 Homework (Central Dogma of Biology)

(a) What is cDNA? Provide a brief written explanation.

(b) (Transcription and Translation) Use the link below to look at an animation of the transcription and translation of DNA. Provide a brief written description of what you see.

<http://www.dnalc.org/resources/3d/central-dogma.html>