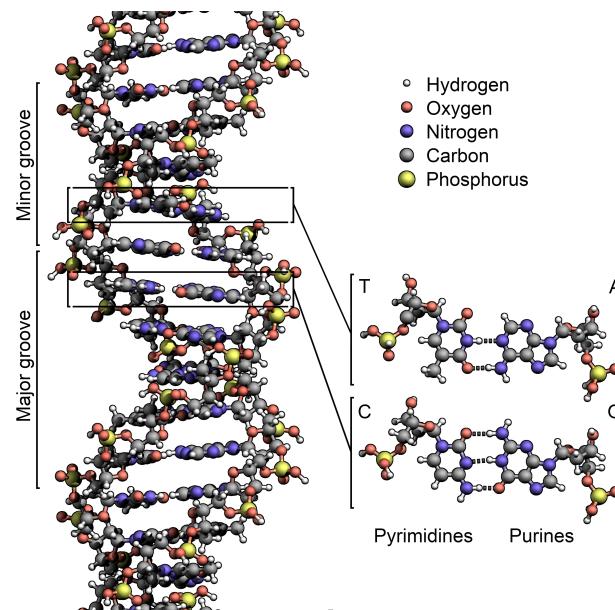


1 Central Dogma of Biology


1 Definition (The Cell)

5 Definition (Amino Acids)

Ala	Arg	Asn	Asp	Cys	Glu	Gln	Gly	His	Ile
A	R	N	D	C	E	Q	G	H	I
Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val
L	K	M	F	P	S	T	W	Y	V

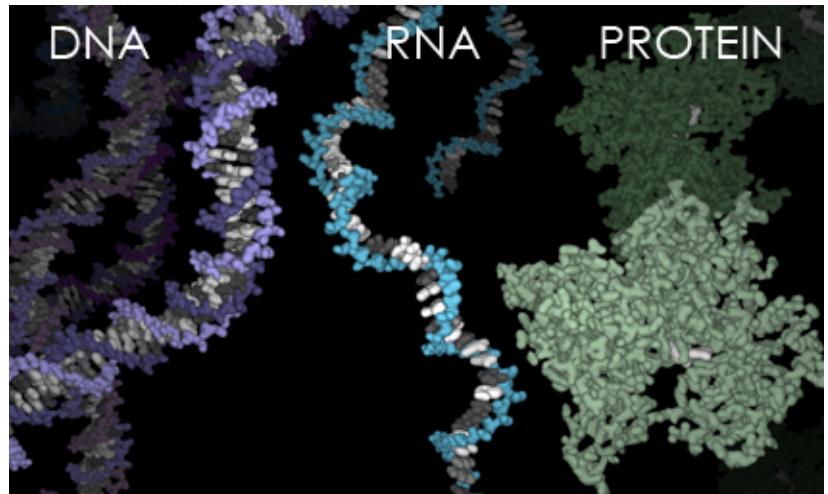
6 Definition (DNA Molecule)

2 Definition (The Cell)

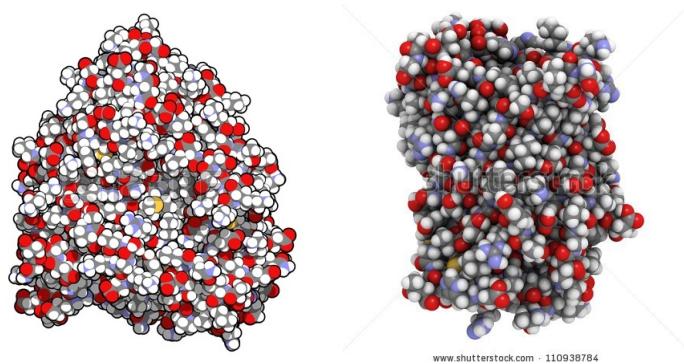
- single cell organisms
- multi cell organisms

3 Definition (The Cell)

- prokaryotes
- eukaryotes


4 Definition (Nucleic Acids)

- DNA: A T G C
- RNA: A U G C


7 Definition (tRNA Molecule)

9 Definition (DNA vs RNA vs Protein Molecule)

8 Definition (Protein Molecules)

1 Lesson (Molecules of Life)

Discuss how the four types of molecules, DNA, mRNA, tRNA and proteins are:

(a) similar.

(b) different.

2 Lesson (Genetic Code)

How can the 20 different amino acids of protein sequences be coded using only the four different nucleic acids of DNA?

10 Definition (Genetic Code)

Genetic Code				
First Position	Second Position			
	C	A	G	
T	TTT Phe TTC Phe TTA Leu TTG Leu	TCT Ser TCC Ser TCA Ser TCG Ser	TAT Tyr TAC Tyr TAA Stop TAG Stop	TGT Cys TGC Cys TGA Stop TGG Trp
C	CTT Leu CTC Leu CTA Leu CTG Leu	CCT Pro CCC Pro CCA Pro CCG Pro	CAT His CAC His CAA Gln CAG Gln	CGT Arg CGC Arg CGA Arg CGG Arg
A	ATT Ile ATC Ile ATA Ile ATG Met	ACT Thr ACC Thr ACA Thr ACG Thr	AAT Asn AAC Asn AAA Lys AAG Lys	AGT Ser AGC Ser AGA Arg AGG Arg
G	GTT Val GTC Val GTA Val GTG Val	GCT Ala GCC Ala GCA Ala GCG Ala	GAT Asp GAC Asp GAA Glu GAG Glu	GGT Gly GGC Gly GGA Gly GGG Gly

11 Definition (Genes)

Genes are segments of DNA that are transcribed and translated into a protein sequence. Splicing may be required.

- codon: group of three nucleic acids that code for a single amino acid.
- introns: portions of a gene that are removed before translation.
- exons: portions of a gene that are spliced before translation.

3 Lesson (cDNA)

What is cDNA?

4 Lesson (DNA Transcription and Translation)

The following cDNA sequence contains the beginning of the gene that codes for the human insulin protein.

TGCCTGTCTCCCAGATCACT
GTCCTTCTGCCATGGCCCTG
TGGATGCGCTCCTGGCCC

(a) Determine the sequence of cDNA that codes for the first nine letters of the insulin protein sequence.

Solution:

(b) Determine the sequence of mRNA that codes for the first nine letters of the insulin protein sequence.

Solution:

(c) Determine the first nine letters of the insulin protein sequence.

Solution:

(d) Use the Uniprot database to check your answer to part (c) by looking up the protein sequence for the human insulin protein.

Solution:

5 Lesson (Transcription and Translation)

Use the link below to look at an animation of the transcription and translation of DNA and discuss what you see.

<http://www.dnalc.org/resources/3d/central-dogma.html>

Because it takes three letters of a DNA sequence to translate to a single letter of a protein sequence, where we start the translation in the DNA sequence has a big effect on the resulting protein sequence. In other words, we have to choose the correct **reading frame** before we attempt to translate a DNA sequence into a protein sequence. Reading frames which start with the start codon ATG are called **open reading frames**.

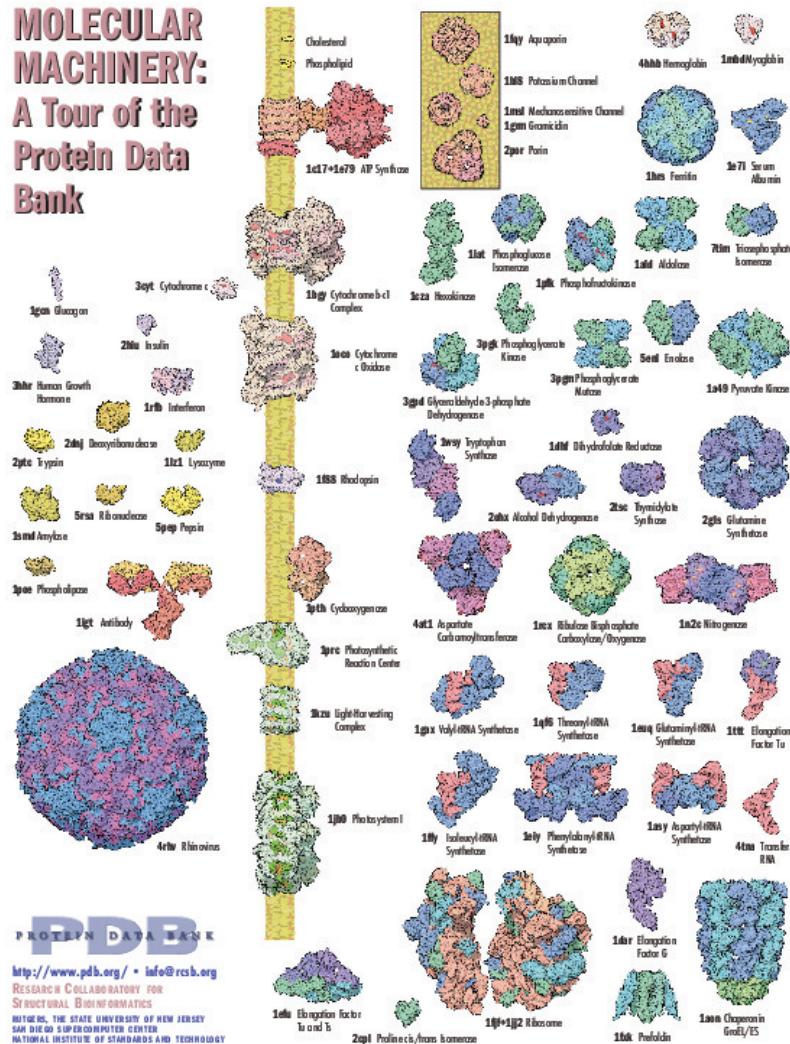
6 Lesson (Jemboss (Translation))

Install the free bioinformatics software package **Jemboss** and use it to check your answers to Lesson 4 part (c). Use the commands

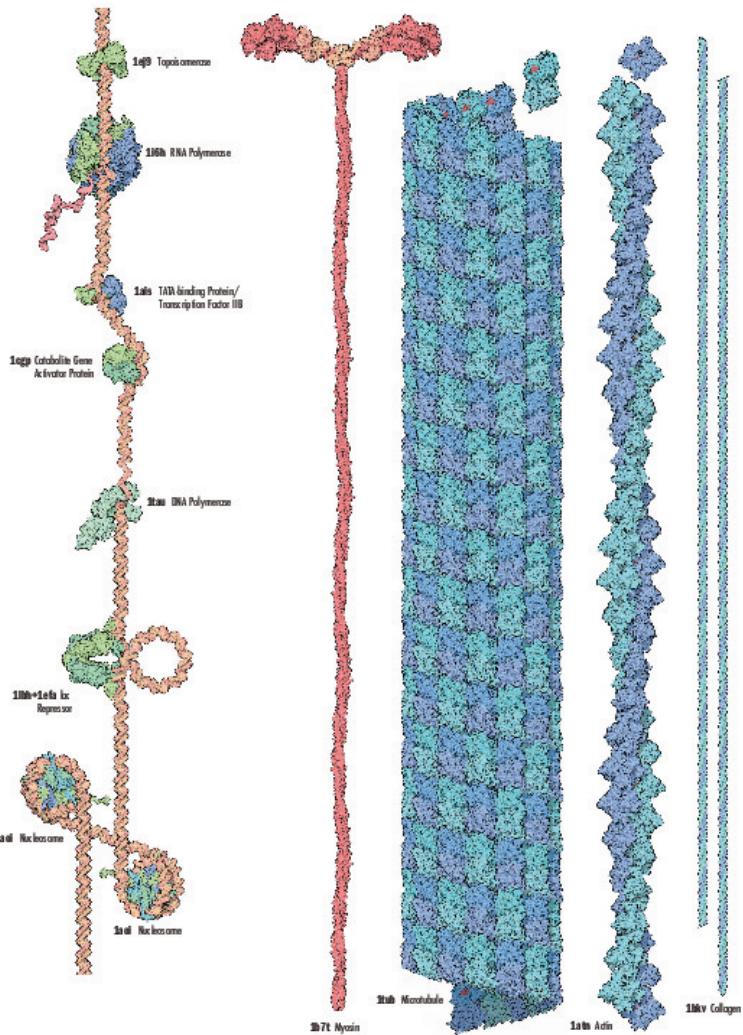
NUCLEIC, TRANSLATION, transeq

7 Lesson (Jemboss (Open Reading Frames))

(a) Determine three of the six possible translations of the following segment of DNA.


T A T A G G G A C T C A

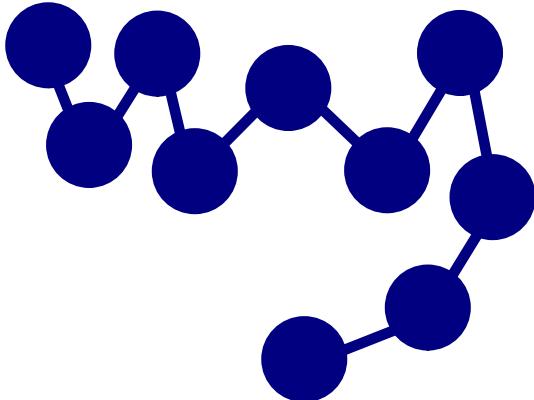
(b) Check your answer with Jemboss. Use the commands NUCLEIC, TRANSLATION, sixpack


Solution:

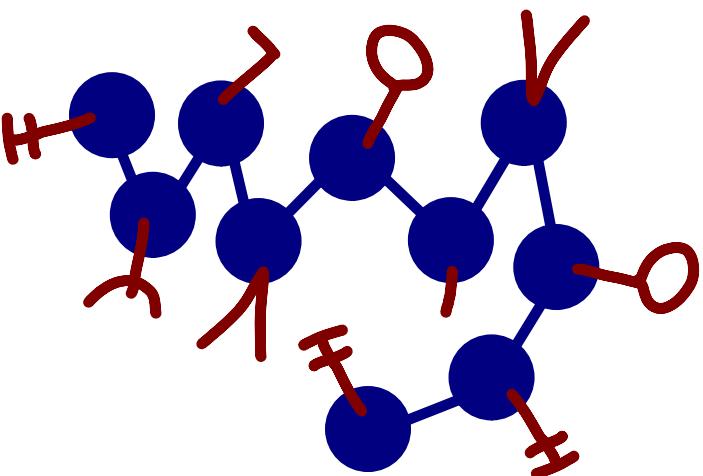
2 Proteins

MOLECULAR MACHINERY: A Tour of the Protein Data Bank

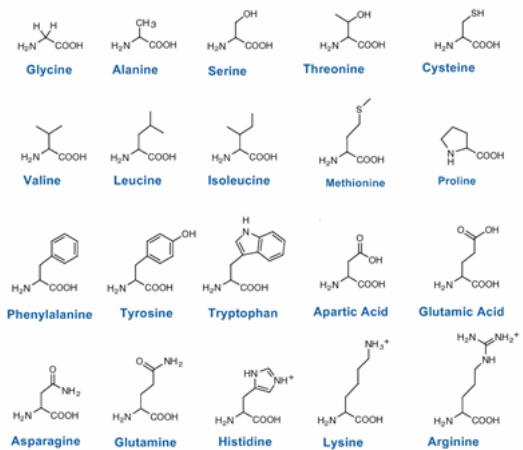
13

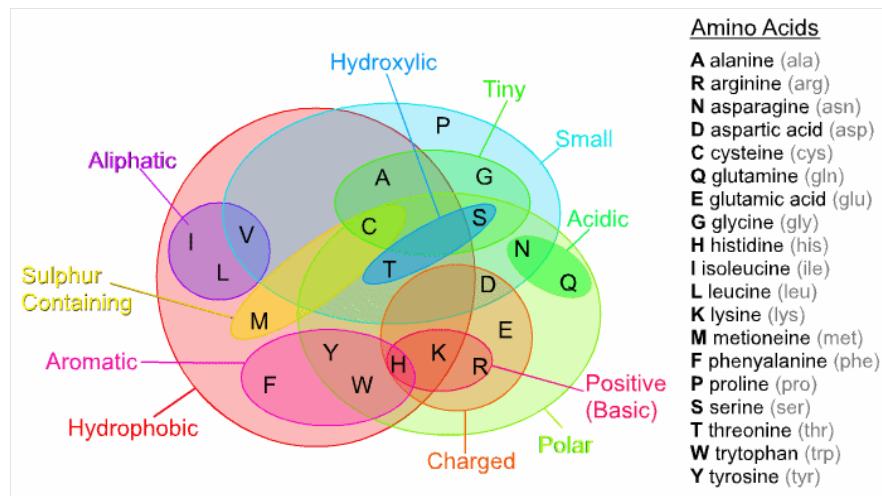


14 Definition (Protein Structure)

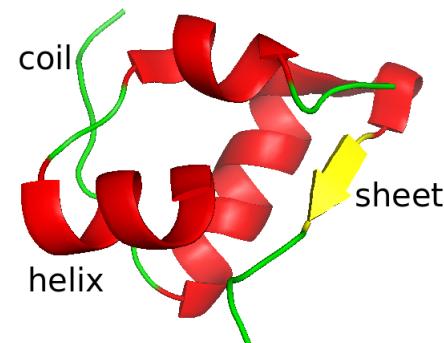

- primary structure
- secondary structure
- tertiary structure

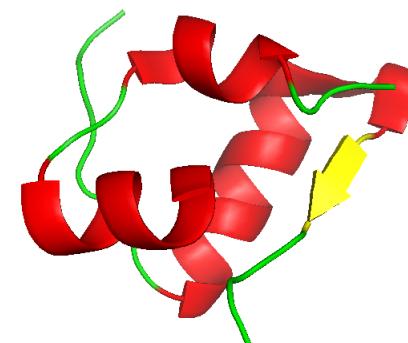
• quaternary structure


15 Definition (Primary Structure—Backbone)


16 Definition (Primary Structure—Sidechains)

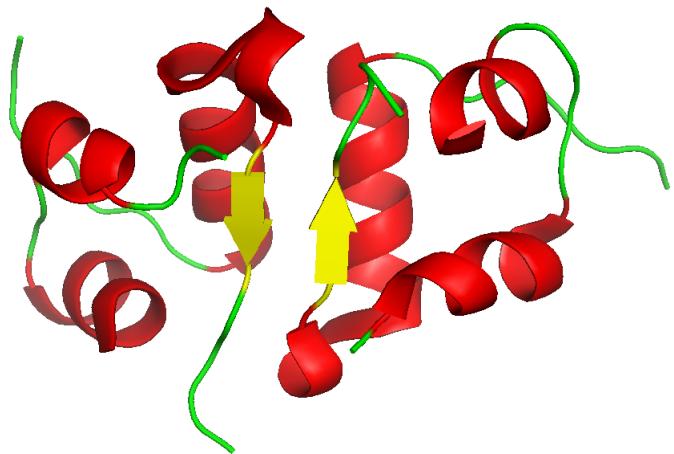
17 Example (Amino Acid Structures)


18 Example (Amino Acid Properties)

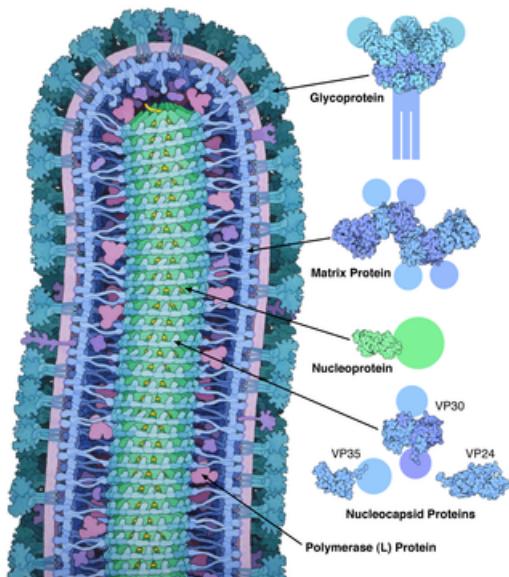

19 Example (Insulin Primary Sequence)

MALWMRLPL	LALLALWGPD	PAAAFVNQHL	CGSHLVEALY	LVCGERGFFY	50
TPKTRREAED	LQVGQVELGG	GPGAGSLQPL	ALEGSLQKRG	IVEQCCTSIC	100
SLYQLENYCN					110

20 Example (Insulin Secondary Structure)



21 Example (Insulin Tertiary Structure)



22 Example (Insulin Quaternary Structure)

23 Example (Proteins in Ebola)

3 Biopython

Use the following instructions to install the Anaconda Python package:

- Download the appropriate package from <http://continuum.io/downloads>
- Open a terminal using the ALT-CLTR-t keyboard short-cut.
- Use the linux command cd to change to the directory containing the downloaded file.
- Type bash <downloaded file name> to install the package. (You can use the tab key to complete the name once you have typed the first few characters of the file name.)
- Type conda install Biopython to install the python bioinformatics package.

Startup the IPython notebook. If you are using linux, open a terminal and type
ipython notebook -pylab inline

If you are using Windows enter the command %pylab inline at the beginning of your notebook.

Use the following commands to plot a sine curve. To create 100 points equally spaced between 0 and 2π type

```
t = linspace(0,2*pi,100)  
print t  
Plot the sine curve  
plot(sin(t))
```

The ipython notebook combines the best features of programs like Matlab and Maple.

24 Example (IPython)

Download the insulin_cDNA.txt file. Explain what each of the following commands do:

```
file = open('insulin_cDNA.txt')  
file. (press tab key)  
seq = file.readline().strip()  
print seq  
len(seq)  
seq[0]  
seq[1]
```

```
seq[-1]
seq. (press tab key)
seq.find?
seq.find('ATG')
seq[42]
seq[42:45]
seq.count('ATG')
seq[::-1]
```

```
print DNA
DNA?
DNA. (press tab key)
print DNA.reverse_complement()
mRNA = DNA.transcribe()
print protein
protein.find('M')
protein.find('*')
print protein[14:125]
```

Python uses object oriented programming.

25 Example (Object Oriented Programming)

For example, consider the python command:

```
marker = MARKER(color = blue)
```

The function `MARKER(color = blue)` is a factory function which manufactures objects, in this case markers. The `color=blue` argument specifies that a blue marker should be manufactured.

Objects have attributes. For example, the color attribute `marker.color` should equal blue.

Objects also have methods. For example, the `marker` method `marker.change_color(red)` changes the color attribute of the marker from blue to red.

In IPython, typing `marker.` followed by the tab key will list all the attributes and methods associated with the marker object. Typing `marker?` will provide information about the marker object.

26 Example (Biopython)

Explain what the following Biopython commands do:

```
file = open('insulin_cDNA.txt')
seq = handle.readline().strip()
print seq

from Bio.Seq import Seq
from Bio.Alphabet import IUPAC
DNA = Seq(seq,IUPAC.unambiguous_dna)
DNA
```

9 Lesson (Translating DNA)

Download the following files:

```
insulin_human_DNA.txt
insulin_human_cDNA.txt
```

(a) How many start codons are there in a the complete gene for human DNA? Make sure you check all six reading frames.

Solution:

(b) Translate the cDNA sequence for insulin to a protein sequence. Check your answer using Uniprot.

4 Sequence Alignment

DNA is subject to mutations. We will only consider insertions, deletions and substitutions.

27 Definition (Mutations)

```

original sequence  ATTGCTCC
original sequence  ATTG_CCTCC
      insertion  ATTGGCTCC
original sequence  ATTGCTCC
      deletion   ATT_CCTCC
original sequence  ATTGCTCC
      substitution ATTCTCC

```

28 Example (Sequence Alignment)

Consider the sequences:

```

TAGTA
ATAT

```

Before we can determine how similar the sequences are to each other, we must first align the sequences. Two optimal alignments obtained using *dynamic programming* are:

```

TAGTA      _TAGTA
_A_TAT    ATA_T_

```

29 Example (Dot Plots)

Use a dot plot to compare the following sequences:

```

TAGTA
ATAT

```

```

      T   A   G   T   A
A   o           o
T   o           o
A   o           o
T   o           o

```

10 Lesson (Dot Plots)

How similar are human, horse and chicken insulin? Use Jemboss to create dot plots comparing the insulin sequence for each.

- Go to www.uniprot.org.
- In the search field click on advanced.

- Select Gene name [GN] and type INS (for the insulin gene).
- Scroll down the results and click on the check box in the left column for human, horse and chicken insulin.
- Select download and a new window will appear containing the insulin sequences for human, horse and chicken in fasta format.
- Open Jemboss.
- Select ALIGNMENT, Dot Plots, polyplots.
- Cut and paste the fasta sequence data into Jemboss.
- Select pdf format for the output.
- Go to the Jemboss folder to retrieve the results.
- Interpret the plots.

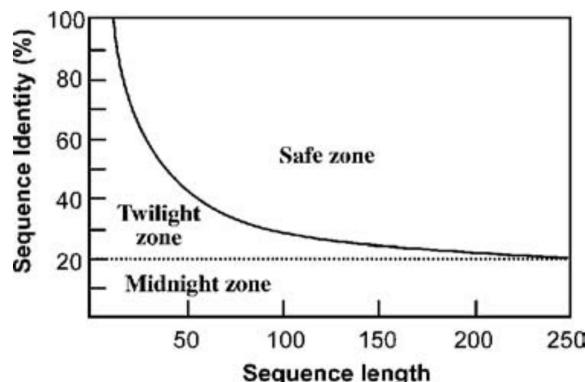
11 Lesson (Dot Plots)

Repeat the previous lesson except compare the following insulin sequences:

```

P01319 INS_CAPI (Goat)
P01317 INS_BOVIN (Cow)
P01318 INS_SHEEP

```


(You may need to click in bottom right corner to display all insulin sequences at once.)

30 Definition (Homology)

Sequences which have evolved from a common ancestor are called **homologous**.

Similar sequences are likely to be homologous. However, we should keep in mind that sequences that have evolved from a distant ancestor may no longer be very similar to each other.

31 Definition (Sequence Alignment Zones)

Jin Xiong, Essential Bioinformatics, p. 33.

- safe zone: sequences are very likely to be homologous.
- twilight zone: sequences may be homologous.
- midnight zone: no reliable conclusion possible.

32 Definition (Percent Sequence Identity and Similarity)

After two sequences have been aligned, sequence identity and similarity is computed in one of two possible ways:

L_a is the length of the shorter sequence.

L_b is the length of the longer sequence.

N is either the number of identical or the number of similar letters in the alignment.

Sequence identity/similarity is computing using one of the two following formulas:

Formula 1

$$I = 100 \frac{N}{L_a}$$

Formula 2

$$I = 100 \frac{N}{\frac{L_a + L_b}{2}}$$

12 Lesson (Sequence Identity and Similarity)

Use uniprot.org to align cow insulin P01317, sheep insulin P01318 and goat insulin P01319.

(a) In the uniprot.org search box type

P01317 or P01318 or P01319

Select the check boxes for these insulin sequences and then select the alignment button. Wait a few seconds for the alignment to be computed by uniprot.org.

(b) Which sequences have a signal peptide attached? (Hint: check the box signal peptide in left column.)

(c) Which sequences have the propeptide attached? (Hint: check the box propeptide in left column.)

(d) Which sequences have the peptide segment? (Hint: check the box peptide in left column.)

(e) Complete the following tables *using only the peptide segment of each sequence*.

Sequence Identity:	cow	sheep	goat
	cow	100%	
	sheep		100%
goat			100%

Sequence Similarity:	cow	sheep	goat
	cow	100%	
	sheep		100%
goat			100%

Solution: