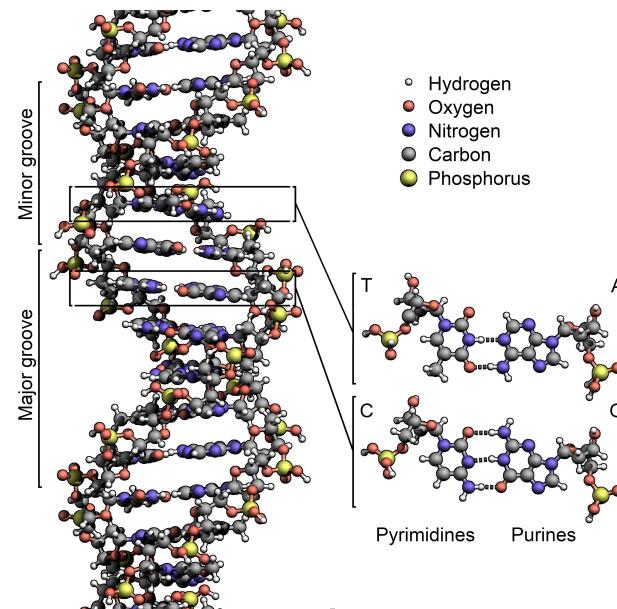


1 Central Dogma of Biology


1 Definition (The Cell)

5 Definition (Amino Acids)

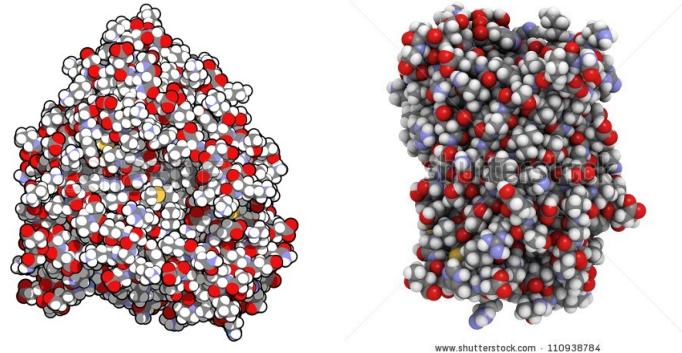
A R N D C E Q G H I L K M F P S T W Y V

6 Definition (DNA Molecule)

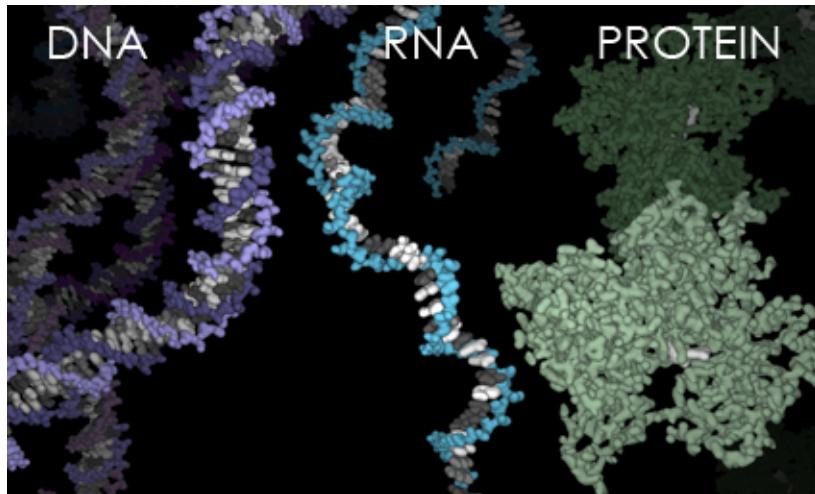
2 Definition (The Cell)

- single cell organisms
- multi cell organisms

3 Definition (The Cell)


- prokaryotes
- eukaryotes

4 Definition (Nucleic Acids)


- DNA: A T G C
- RNA: A U G C

8 Definition (Protein Molecules)

9 Definition (DNA vs RNA vs Protein Molecule)

1 Lesson (Molecules of Life)

Discuss how the four types of molecules, DNA, mRNA, tRNA and proteins are:

(a) similar.

(b) different.

2 Lesson (Genetic Code)

How can the 20 different amino acids of protein sequences be coded using only the four different nucleic acids of DNA?

10 Definition (Genetic Code)

Genetic Code											
				Second Position				Third Position			
		First Position	T	C	A	G					
T	TTT	Phe	TCT	Ser	TAT	Tyr	TGT	Cys	T		
	TTC	Phe	TCC	Ser	TAC	Tyr	TGC	Cys	C		
	TTA	Leu	TCA	Ser	TAA	Stop	TGA	Stop	A		
	TTG	Leu	TCG	Ser	TAG	Stop	TGG	Trp	G		
C	CTT	Leu	CCT	Pro	CAT	His	CGT	Arg	T		
	CTC	Leu	CCC	Pro	CAC	His	CGC	Arg	C		
	CTA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	A		
	CTG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G		
A	ATT	Ile	ACT	Thr	AAT	Asn	AGT	Ser	T		
	ATC	Ile	ACC	Thr	AAC	Asn	AGC	Ser	C		
	ATA	Ile	ACA	Thr	AAA	Lys	AGA	Arg	A		
	ATG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G		
G	GTT	Val	GCT	Ala	GAT	Asp	GGT	Gly	T		
	GTC	Val	GCC	Ala	GAC	Asp	GGC	Gly	C		
	GTA	Val	GCA	Ala	GAA	Glu	GGG	Gly	A		
	GTG	Val	GCG	Ala	GAG	Glu					

11 Definition (Genes)

Genes are segments of DNA that are transcribed and translated into a protein sequence. Splicing may be required.

- codon: group of three nucleic acids that code for a single amino acid.
- introns: portions of a gene that are removed before translation.
- exons: portions of a gene that are spliced before translation.

3 Lesson (cDNA)

What is cDNA?

4 Lesson (DNA Transcription and Translation)

The following cDNA sequence contains the beginning of the gene that codes for the human insulin protein.

tgcctgtctcccagatcactgtccctgtccatggccctgtggatgcgcctcctgcccc

(a) Determine the sequence of cDNA that codes for the first nine letters of the insulin protein sequence.

Solution:

(b) Determine the sequence of mRNA that codes for the first nine letters of the insulin protein sequence.

Solution:

(c) Determine the first nine letters of the insulin protein sequence.

Solution:

(d) Use the Uniprot database to check your answer to part (c) by looking up the protein sequence for the human insulin protein.

Solution:

5 Lesson (Transcription and Translation)

Use the link below to look at an animation of the transcription and translation of DNA and discuss what you see.

<http://www.dnalc.org/resources/3d/central-dogma.html>
