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Abstract— The implicit equations of a symplectic-energy-
momentum integrator are not easily solved, especially for
small time steps. An inefficient, nested iteration scheme has
typically been used to solve these equations. We describe new,
more efficient, iteration schemes which avoid nested iterations.
We present simulation results comparing five different second-
order, integration methods for two different types of three-
body trajectories. Symplectic-energy-momentum integration is
shown to be as efficient as the leapfrog method for one of
these trajectories.
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1. Introduction
Hamiltonian dynamical systems arise in a wide variety of

applications ranging in scope from quantum mechanics to
optimal control theory. Numerical integration methods which
preserve the special properties of Hamiltonian dynamical
systems are, therefore, of considerable interest.

A symplectic-energy-momentum (SEM) integrator is a spe-
cial type of numerical integrator (differential equations solver)
which preserves the following key properties of Hamiltonian
systems: i) symplecticness ii) conservation of energy iii)
conservation of momentum.

The importance of preserving symplecticness can be ex-
plained by the following property of symplectic integrators: If
a numerical integration method is symplectic, then it can be
derived from a discrete variational principle [1]. The discrete
variational principles of symplectic integrators give symplectic
integrators, special, coordinate invariant (geometric) proper-
ties. In fact, symplectic integrators behave like Hamiltonian
dynamical systems, each described by a Hamiltonian function
[2].

The term “symplectic-energy-momentum” integrator was
coined by Kane, Marsden and Ortiz [3]. My own work on
SEM integration—known as discrete-time Hamiltonian (DTH)
dynamics [4]—predates the work of Kane, et al. DTH dynam-
ics originated from my effort to obtain the exact energy and
momentum conserving properties of the discrete mechanics of
Greenspan [5], [6], from the variational principle used by Lee
[7], [8] in his discrete mechanics.

The equations of a SEM integrator are implicitly defined and
difficult to solve, especially for small time steps. Until recently,

I have been using a computationally expensive, nested, Newton
iteration scheme. In this article, I describe a new iteration
scheme which is nearly six times faster. I present simulation
results comparing SEM integration using this new iteration
scheme to four other, second-order methods: 1) the widely
used leapfog method, 2) the explicit second-order Runge-Kutta
method, 3) the implicit midpoint method and 4) the discrete
mechanics method of Greenspan. Table 1 lists the special
properties of each of the methods compared in this article.

Property Method
lf rk2 mid dmg dth

applicable to general Hamiltonians ? ? ?
explicit ? ?

variable time step ?
symplectic ? ? ?

conserves energy ? ?
conserves angular momentum ? ? ? ?

conserves linear momentum ? ? ? ? ?

lf — leapfrog method
rk2 — second-order Runge-Kutta method
mid — implicit midpoint method
dmg — discrete mechanics of Greenspan
dth — DTH dynamics

Table 1
PROPERTIES OF THE METHODS COMPARED IN THIS ARTICLE.

2. Foundations of DTH Dynamics
In this section, I derive the DTH equations of SEM integra-

tion, equations (3)–(4), from the DTH Principle of Stationary
Action, the variational principle that defines DTH dynamics.
We begin with preliminary definitions.

Let H(t, q1, . . . , qn, p1, . . . , pn) be the Hamiltonian func-
tion of an n degree-of-freedom Hamiltonian dynamical sys-
tem. (Often, the Hamiltonian function is simply the energy
function of a dynamical system.) Let q = (q1, . . . , qn, t)
be the position coordinates and p = (p1, . . . , pn, ℘) be the
momentum coordinates in extended phases space where the
time, t, and the momentum conjugate to time, ℘, are on an
equal footing with the other coordinates. Let zk = (qk, pk)
be a sequence of points in extend phase space which are
the vertices of a piecewise-linear, continuous trajectory. (See
Figure 1.) Let ∆qk = qk+1 − qk and ∆pk = pk+1 − pk.
Define the one-step action of a discrete-time Hamiltonian
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Fig. 1
A PIECEWISE-LINEAR, CONTINUOUS TRAJECTORY.

dynamical system to equal the extended-phase space function
A(qk+1, pk) where

A(qk+1, pk) =
1
2

∆q>k ∆pk. (1)

(It is possible to show that the one-step action A(qk+1, pk)
equals the symplectic area of the triangle shown in Fig-
ure 1.) Let H(z) be an extended-phase space Hamil-
tonian function. (Typically, we define H(z) to equal
H(t, q1, . . . , qn, p1, . . . , pn) + ℘.) Define zk = 1

2 (zk + zk+1).
The variational principle used to define DTH dynamics is
stated below:

DTH Principle of Stationary Action:
A DTH trajectory is a piecwise-linear, continuous
trajectory determined by the vertices zk for which
the one-step action A(qk+1, pk) is stationary for
variations satisfying the constraint H(zk) = 0.

The method of Lagrange multipliers can be used to derive
the equations which determine DTH trajectories. Define the
Lagrangian function L(qk+1, pk, λk) as follows:

L(qk+1, pk, λk) = A(qk+1, pk) + λkH(zk). (2)

The DTH Principle of Stationary Action implies that the
gradient of the Lagrangian function, ∇L, must equal zero
along DTH trajectories. Now, it is possible to show that the
gradient of the one-step action, ∇A, equals 1

2J∆zk, where

J =
(

0 I
−I 0

)
is the skew-symmetric matrix commonly used in symplectic
geometry and I is the (n + 1) × (n + 1) identity matrix.
Therefore, we have

∇L =
(
∇A+ λk∇H

H

)
=

(
1
2J∆zk + λk

1
2Hz

H

)
.

Since J2 equals the negative of the (2n+2)×(2n+2) identity
matrix, the equation ∇L = 0 implies

∆zk = λkJHz(zk) (3)
H(zk) = 0. (4)

Equations (3)–(4) are the DTH equations of SEM integra-
tion and were first derived in [4]. The proof of the existence
and uniqueness of solutions to equations (3)–(4) is nontrivial
[4], [9]. I have been able to show that, for sufficiently small
time steps, a locally unique solution to the DTH equations
always exists for regions of extended phase space where the
function

ψ(z) = (JHz)>Hzz(JHz)

is bounded away from zero. DTH trajectories crossing ψ(z) =
0 manifolds need to be regularized in some fashion [9].
A symplectic-energy-momentum preserving, regularization of
such trajectories is described in [10].

Until recently, I have been using a nested, Newton iteration
scheme to solve equations (3)–(4). In this nested scheme, the
function zk = z(zk, λk) implicitly defined by equation (3) is
first evaluated using an inner Newton iteration. Then z(zk, λk)
is used in an outer Newton iteration to solve the now decoupled
equation (4), i.e. the equation g(λk) = H(z(zk, λk)) = 0 is
solved for λk. In the next section, I derive a more efficient it-
eration scheme which avoids nested interations. I also describe
an iteration that does not require computation of the Hessian
matrix, Hzz.

3. Efficient Iteration Schemes
In this section, I will use the simplified notation z = zk,

z0 = zk and λ = λk. By taking half a time step, the DTH
equations (3)–(4) can be expressed as

f(z, λ) = z− z0 −
1
2
λJHz(z) = 0 (5)

g(z, λ) = H(z) = 0 (6)

The Jacobian matrix needed for a direct application of New-
ton’s method to equations (5)–(6) is(

fz fλ
g>z gλ

)
=

(
I − 1

2λJHzz − 1
2JHz

H>z 0

)
. (7)

We can show that the Jacobian matrix given by (7) is singular
when the time step, λ, equals zero, as follows. Multiplying
the first 2n+ 2 rows of the Jacobian matrix by H>z and using
the fact that − 1

2H
>
z JHz = 0 yields the row-equivalent row(
H>z − 1

2λH
>
z JHzz 0

)
. (8)

When λ = 0, (8) is identical to the last row of (7) implying
that the Jacobian matrix is singular. Not surprisingly, a direct
application of Newton’s method to the DTH equations (5)–(6)
performs poorly for small time steps. It is possible to show
that the nested iteration scheme, outlined at the end of the
previous section, avoids ill-conditioned matrices [4]. Nested
iterations, however, are computationally expensive.

We now derive more efficient iteration schemes. Linearizing
equations (5)–(6) we have

f + fzdz + fλdλ = 0 (9)
g + g>z dz + gλdλ = 0. (10)



Solving equation (9) for dz yields the equation

dz = f−1
z (−f − fλdλ) . (11)

(Note that, for sufficiently small λ, fz = I − 1
2λJHzz is a

well-posed matrix.) Substituting equation (11) into equation
(10) yields

g + g>z f−1
z (−f − fλdλ) + gλdλ = 0 (12)

Solving (12) for dλ gives the following iteration:

dλ =
g − g>z f−1

z f

g>z f−1
z fλ − gλ

(13)

dz = −f−1
z (f + fλdλ) . (14)

I have found that it is more efficient to approximate f−1
z by

using the matrix perturbation lemma

f−1
z =

(
I − 1

2
λJHzz

)−1

≈ I +
1
2
λJHzz.

I have also found that it is more efficient to evaluate the
Hessian matrix, Hzz, only once, at the beginning of each time
step and use it repeatedly for all subsequent iterations. In
fact, it is possible to avoid computing the Hessian matrix Hzz

altogether by using the following Broyden estimate [11] for
Hzz at the beginning of each time step:

Hzz ≈
(H+

z −Hz) δz>

δz>δz

where H+
z is the value of the gradient of H at z+ = zk +

1
2λk−1JHz(zk) and δz = z+ − zk.

4. Numerical Results
In this section, I present numerical simulation results for the

five, second-order methods listed in Table 1. First, I present
numerical results for a two-dimensional, three-body, periodic
orbit described in [12]. (See Figure 2.) Simo describes this
figure-eight orbit as having remarkable stability properties. We
should expect this orbit to behave robustly to discretization
errors. Since this orbit does not cross ψ(z) = 0 manifolds,
DTH trajectories for this orbit do not need to be regularized.

Next, I present numerical results for an entirely different
type of three-body trajectory—one involving the near-collision
and subsequent scattering of the three bodies. This near-
collision trajectory is plotted in Figure 3. The near-collision
trajectory crosses ψ(z) = 0 manifolds several times, so DTH
trajectories need to be regularized for this trajectory. How this
is done is beyond the scope of this article, but I describe how
I do this in detail in [10].

Table 2 lists the normalized, average CPU time per time
step for five different integration methods and several different
iteration schemes, for the figure-eight orbit. The leapfrog and
Runge-Kutta methods, which are the only explicit methods,
are significantly faster than the other methods. All methods
become faster, on a per time step basis, as the time step
becomes smaller. For the explicit methods, this is probably
do to more efficient utilization of the CPU. For the implicit
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Fig. 2
THREE-BODY FIGURE-EIGHT ORBIT.

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1

0

1

2

x

y

Fig. 3
THREE BODY NEAR-COLLISION TRAJECTORY.

methods, the need for fewer iterations to achieve convergence
as the time step is reduced, likely plays a larger role.

The Newton and Broyden iteration schemes for the DTH
equations roughly take the same CPU time per time step. The
Broyden iteration has the advantage of not requiring compu-
tation of the Hessian matrix, Hzz, so we use the Broyden
iteration for all subsequent comparisons.

Simulation results showed that the midpoint method did
not benefit from a Broyden estimate of the Hessian matrix,
Hzz. Functional iterations, in which the Hessian matrix, Hzz,
is simply replaced by the identity matrix, were slightly faster
for the midpoint method.

The leapfrog method exploits the special structure of the
Hamiltonian function of the three-body problem expressed in
Cartesian coordinates. (The leapfrog method is, in general,
implicit for arbitrary Hamiltonian functions.) The iteration
scheme for the midpoint method can be modified to also
exploit this special structure of the three-body, Hamiltonian
function when expressed in Cartesian coordinates. I do this
by explicitly solving for the momentum coordinates in terms
of the position coordinates. The modified iteration results in



Time Steps per Orbit
100 200 400 800 1600 3200

leapfrog 3.3 1.2 1.2 1.1 1.0 1.0
Runge Kutta (2nd order) 3.4 1.9 1.8 1.8 1.7 1.8
midpoint (Newton) 13.9 11.6 10.5 10.1 8.9 8.9
midpoint (functional) 14.4 10.1 8.6 7.5 6.5 6.4
midpoint (Newton-modified) 11.0 8.2 7.6 7.3 7.9 7.6
midpoint (functional-modified) 9.3 8.1 6.1 4.7 4.6 4.7
discrete mechanics (functional) 29.8 20.5 17.7 15.6 13.2 13.4
DTH dynamics (nested-Newton) 201.8 182.4 159.9 147.0 126.6 112.5
DTH dynamics (Newton) 34.9 23.9 22.1 19.5 19.2 19.3
DTH dynamics (Broyden) 40.1 27.0 23.0 20.7 19.0 18.9

Table 2
AVERAGE CPU TIME PER TIME STEP, OVER ONE ORBIT. TIMES ARE NORMALIZED BY THE SMALLEST AVERAGE CPU TIME.

approximately a 25% reduction in CPU time. I was unable to
derive a similarly modified iteration for the DTH equations.
(The Lagrange multiplier in the DTH equations introduces
a coupling of position and momentum coordinates.) The
function evaluations of the discrete mechanics method of
Greenspan are significantly different from the other methods.
Do to time constraints, a derivation of a modified iteration
exploiting the special structure of the three-body problem
in Cartesian coordinates was not attempted for the discrete
mechanics of Greenspan.

The efficiency of a method is not only determined by CPU
time per time step, but also the accuracy of the time step. To
compare the computational efficiency of each method, I plot
CPU time vs coordinate accuracy in Figure 4. (Coordinate
accuracy is computed by comparing to the trajectory com-
puted with Matlab’s Dormand-Prince 4–5th order Runge-Kutta
method.) From Figure 4, we can see that the leapfrog method
is the most efficient method by a significant margin. Despite
their special properties (see Table 1), the discrete mechanics of
Greenspan and DTH dynamics are the least efficient methods
for this trajectory.
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Fig. 4
ACCURACY VS CPU TIME FOR ONE ORBIT OF THE FIGURE-EIGHT

TRAJECTORY.

Good long-time behavior is a hallmark of symplectic in-
tegration methods. To assess long-time behavior, I plot in
Figure 5, the error in energy conservation (at vertex points)
as a function of time. Even though the discrete mechanics of
Greenspan is not symplectic, it conserves energy up to round-
off error/convergence tolerance and has the best long-time
energy behavior at vertex points. The second-order Runge-
Kutta method is the other method which is not symplectic. It
has the worst long-time behavior.
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Fig. 5
ENERGY CONSERVATION ERROR FOR THE FIGURE-EIGHT ORBIT.

Finally, I present simulation results for the near-collision
trajectory plotted in Figure 3. Figure 6 shows that, for small
time steps, the variable time step capability of DTH dynamics
makes it as efficient as the leapfrog method.

5. Conclusions
Despite having many desirable properties, simulation results

in this article show that SEM integration, currently, can not
reliably beat the widely used leapfrog method. Even more
efficient iteration schemes will be required before this is
possible. SEM integration may prove competitive for other
applications for which the leapfrog method is implicit. One
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Fig. 6
ACCURACY VS CPU TIME FOR THE NEAR-COLLISION TRAJECTORY.

such application is molecular dynamics simulations of protein
molecules in φ–ψ internal coordinates.

I conclude by pointing out that other iterations schemes for
DTH dynamics have been derived by Ander Murua [13]. These
iterations schemes will be included in future studies.

References
[1] Y. Wu, “The discrete variational approach to the Euler-Lagrange equa-

tions,” Computers and Mathematics with Applications, vol. 20, pp. 61–
75, 1990.

[2] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems.
Chapman and Hall, 1994.

[3] C. Kane, J. Marsden, and M. Ortiz, “Symplectic-energy-momentum
preserving variational integrators,” Journal of Mathematical Physics,
vol. 40, July 1999.

[4] Y. Shibberu, “Discrete-time Hamiltonian dynamics,” Ph.D. dissertation,
Univ. of Texas at Arlington, 1992, www.rose-hulman.edu/∼shibberu/
DTH Dynamics/DTH Dynamics.htm.

[5] D. Greenspan, Discrete Numerical Methods in Physics and Engineering.
Academic Press, 1974.

[6] ——, Arithmetic Applied Mathematics. Pergamon Press, 1980.
[7] T. D. Lee, “Can time be a discrete dynamic variable?” Physics Letters

Physics, vol. 122B, pp. 217–220, 1983.
[8] ——, “Difference equations and conservation laws,” Journal of Statis-

tical Physics, vol. 46, pp. 843–860, 1987.
[9] Y. Shibberu, “Is symplectic-energy-momentum integration well-posed.”

August 2006, arXiv:math-ph/0608016v1.
[10] ——, “How to regularize a symplectic-energy-momentum integrator,”

July 2005, arXiv:math/0507483v1.
[11] J. J.E. Dennis and R. B. Schnabel, Numerical Methods for Uncon-

strained Optimization and Nonlinear Equations. SIAM, 1996.
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