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Abstract

An energy conserving, symplectic discretization of Hamiltonian dy-
namics is obtained by discretizing the principle of least action in ex-
tended phase space. The resulting piecewise-linear, continuous trajec-
tories exactly conserve the Hamiltonian at the midpoints of each linear
segment. The discrete action generates symplectic transformations be-
tween the vertices of the trajectories. Conserved quadratic functions
are exactly conserved at the vertices. As in the discrete mechanics
of T.D. Lee, time is a dependent dynamic variable. Existence and
uniqueness results are presented as well as some preliminary results on
coordinate invariance.

Comment: Most of the results in this paper are based on the author’s
1992 Ph.D. thesis [14]. The results on the asymptotic behavior
of time are based on unpublished work completed by the author
in 1994. Many of the results in section 2 of this paper are proved
in [15] for autonomous Hamiltonian dynamical systems with one
degree of freedom. Readers unfamiliar with symplectic transfor-
mations or extended phase space may find [15] more readable
than the current paper.

1 Introduction

Hamiltonian dynamical systems arise naturally in classical mechanics, quan-
tum mechanics and statistical mechanics, as well as in many other areas such
as optimal control theory and geometric optics. For both theoretical and



computational reasons, discrete models of Hamiltonian dynamics are of con-
siderable interest. Dilemmas that the concept of infinity can introduce in
continuous theories are described by Greenspan [5],[6]. Horzela et al. [§]
discuss discrete models of space-time and their associated properties.

Hamiltonian dynamics has several very distinctive properties which ide-
ally should be reproduced by a discrete model. The Hamiltonian function
is always conserved. (When formulated in extended phase space, this prop-
erty holds true even for nonautonomous systems.) The trajectory flow in
phase space is always a symplectic transformation of the initial conditions.
(For systems with one-degree of freedom, this property is equivalent to the
requirement that the trajectory flow always preserve the phase space area of
any set of initial conditions.) Often, Hamiltonian systems have symmetries
which give rise to conserved quantities such as linear and angular momen-
tum. Ideally, discrete models should reproduce these symmetries whenever
they are present. Hamiltonian dynamics is invariant under symplectic coor-
dinate transformations. Ideally, discrete models should exhibit some similar
form of coordinate invariance.

Discrete models which are symplectic can be represented by a Hamilto-
nian function. This property of symplectic models is very useful for proving
theoretical results. (An excellent introduction to symplectic methods for
Hamiltonian systems is given by Sanz-Serna and Calvo [13].) A theorem of-
ten referred to as Ge’s theorem [3], [2] illustrates the difficulty of formulating
a general discrete model which is both symplectic and which exactly con-
serves the Hamiltonian. Roughly speaking, Ge’s theorem says that a general,
energy conserving, symplectic discretization of Hamiltonian dynamics will
yield, up to a reparametrization of time, the exact dynamics. We describe
this theorem in more detail in section 3.1.

Since Hamiltonian dynamics has a variational formulation, discrete mod-
els of Hamiltonian dynamics can be constructed by discretizing variational
principles. (A recent survey of models based on discrete variational princi-
ples is given in [16].) The discrete model proposed in this paper is similar
to one proposed by T.D. Lee [11],[10] and later modified by D’Innocenzo et
al. [1]. A distinctive feature of these models is that time is a dependent
dynamic variable. This feature is in contrast with the continuous theory of
Hamiltonian dynamics where time is treated as an independent parameter.
In fact, T.D. Lee suggests that a discrete model may actually be more funda-
mental than the continuous theory. The discrete models have an asymptotic
distribution for time which can not be recovered from the continuous theory
alone. We describe this property in more detail in section 3.4.

The discrete models developed by Lee and D’Innocenzo et al. are for



Newtonian potential systems and are constructed in a Lagrangian frame-
work. The discretization we describe in this paper is applicable to arbitrary
Hamiltonian systems and is constructed by discretizing a version of the prin-
ciple of least action. We will refer to the discretization as “DTH dynamics”,
DTH being an abbreviation of “Discrete-Time Hamiltonian.”

The principle of least action has several equivalent formulations [4],[9],[15].
Once discretized however, these different formulations may no longer remain
equivalent to one another. DTH dynamics is based on a discretization of
an extended phase space formulation of the principle of least action. Moti-
vation for choosing this particular formulation for discretizing Hamiltonian
dynamics is given in [15].

The outline of this paper is as follows. In section 2 we describe an ex-
tended phase space version of the principle of least action. We introduce
notation for describing piecewise-linear trajectories. We state the DTH prin-
ciple of stationary action, the discrete variational principle used to define
DTH dynamics. Equations of motion are derived and existence and unique-
ness results are presented. In section 3 we describe several properties of
DTH dynamics. First, we describe Ge’s theorem and explain why the the-
orem does not preclude DTH dynamics from being symplectic and exactly
conserving energy. We show that the discrete action in Definition 2 gener-
ates symplectic transformations between vertices of DTH trajectories. We
describe the asymptotic behavior of time in DTH dynamics. The preser-
vation of quadratic conservation laws is proved. Invariance with respect to
linear, symplectic coordinate transformations is demonstrated. Finally, we
show that DTH dynamics can be viewed as a special instance of a “meta-
algorithm” for constructing variable-step symplectic integrators recently in-
troduced by Hairer [7]

2 Foundations of DTH Dynamics

2.1 Principle of Least Action

Consider an n-degree of freedom Hamiltonian system with Hamiltonian func-
tion H(t,qu,...qn,p1,...pn) Where t represents time and (qi,...¢,)" and
(p1,--- pn)T are position and momentum coordinates respectively. Let q =
(q1,...qn,t)" and p = (p1,...pn,pt)| where p; is the momentum of time.
(See [4],[9],[15] for a description of p;.) Define z = (q,p) ' to be coordinates
in extended phase space. The extended phase space Hamiltonian function



corresponding to H(t,q1,...qn,p1,-..pn) is defined by

H(z) =p:+ H(t,q1,. . qn,P1, - -Pn)

Consider the extended phase space action integral defined by

Aar)) = [ ST 32 () ar (1)

o

where J is the skew-symmetric matrix
01
(1)
and I is the n + 1 by n + 1 identity matrix.

Definition 1 (Principle of Least Action) The trajectory z(T) of a Hamil-
tonian dynamical system with Hamiltonian function H(z) causes the action
integral Alz(T)] to be stationary under the boundary constraints q(7,) =
qQo, P(7y) = py and the Hamiltonian constraint H(z(7)) = 0.

We can obtain Hamilton’s equations of motion from Definition 1 by
introducing Lagrange multipliers for the Hamiltonian constraint H(z(7)) =
0 and writing down the appropriate Euler-Lagrange equations.

AN, 2(r)] = / N <% 2(r) " 37(7) + A(7) H(z(7))> dr
The Lagrangian is given by
L(\z,7) = % z'J7 + \H(z)
and the Euler-Lagrange equations are
2 <%> -2 -0 3)
Equation (2) yields Hamilton’s equations of motion

Z/(1) = A(7) I Hy(2(7)). (4)



Equation (3) yield the Hamiltonian constraint
H(z(1)) = 0 (5)

Equation (5) is not independent from equation (4) since Hamilton’s equa-
tions of motion independently conserve the Hamiltonian. Thus, \(7) is inde-
terminate. Since the equation for time is ¢’ (1) = A7) H,p, (z(7)) = A(7), the
“velocity” of time is indeterminate in the continuous formulation of Hamil-
tonian dynamics. This is not the case for the discretization described below.
We will discretize the principle of least action given in Definition 1 by replac-
ing the trajectory z(7) by a piecewise-linear, continuous trajectory denoted
by z(7) and enforcing the Hamiltonian constraint only at the midpoints of

z(7).

2.2 Piecewise-Linear Trajectories

Assume the points 7%, k = 0,1,--- N partition the interval [7¢, 7] into N
equal intervals of length AT = (7y — 7¢)/N. Assume % : [1g, Tn] — R2"H2
is a piecewise-linear, continuous function of 7 as shown in Figure 1 where
z¥) = 7(7},) are the vertices of (7). Clearly, z(7) is completely determined

Z(k+1)
Z®

Z (k)

Figure 1: A piecewise-linear, continuous trajectory (7).

by its vertices z(*). Define

. Z(k+1) + z(k)

7B = B (gD, Z(k)) 5 (6)
(k+1) _ (k)
7' = /W) (gD k) = % (7)



where k = 0,1,--- N — 1. Since Z(7) is piecewise-linear, it can be expressed
in terms of the values of Z*) and Z’(® in the following way.

(8)

. ZH +z2'®(r -7 <t <Tp k=0,1,---N—-1
2(1) =3

T=TN
where
Tkl + Tk
B 2
The following lemmas will be used in the proof of Theorem 1. The continu-
ity of z(7) implies that Z(¥) and Z’*) must satisfy the following continuity
constraint.

Lemma 1 (Continuity Constraint) A piecewise-linear function z(T) is
continuous if and only if

Zkt1) k) Zr(kt1) 4 5 (k)

AT 2

The proof of Lemma 1 is given in [14].

Lemma 2 From (6) and (7) it follows that for k =0,1,---N —1

oz 1 oz'*) 1
920 2122 90 T A
ozk) 1 0z' (k) 1

aZ(k+l) - 5 12n+2 6Z(k+1) — A_T I2n+2
where Iop o 1s the 2n 4 2 by 2n + 2 identity matriz.

2.3 DTH Dynamics

The following discrete variational principle is used as the definition of DTH
dynamics.

Definition 2 (DTH Principle of Stationary Action) A DTH trajectory
is a piecewise-linear, continuous function 2 : [to, 7n] — R2"F2 for which

the sum:
A[AT, N0, Av-1,2()] = 5 (d )

L\JIH

Nzl B (2(3‘)) (—()) \H(E ())} Ar 4+
=0
% (quv))T p™)



1s stationary. The endpoints q? and p®™) are assumed fixed. For a Hamil-
tonian system with a Hamiltonian function H(t,q1,...qn,p1,---Dn) , the
function H(z) is defined to be

H(z) =p: + H(t,q1,. . qn,P1,---Pn)

The variable A; in Definition 2 is a Lagrange multiplier for the Hamil-
tonian constraint H(z")) = 0. Observe that the discretization enforces this
constraint only at the midpoints ZU). The equations of motion for DTH
dynamics are given by the following theorem.

Theorem 1 (DTH Equations of Motion) A piecewise-linear, continu-
ous function z : [1o,7n] — R¥"*2 is a DTH trajectory if and only if ¥
and Z'") satisfy the following equations:

zH) —z 1 OH(zH D) OH(z) b0l N _9
Ar 2 [T g TN m — O b A
_ OH(Z)
k) _ _
z’()—)\kJW k=0,1,---N—1 (10)
HZ®)=0 k=0,1,---N—1 (11)

Theorem 1 says that Definition 2 completely determines the values of
zZ*) and Z® for k = 0,1,---N — 1 which, by equation (8) implies 2(7)
is completely determined also. (Existence and uniqueness questions will be
addressed later.) It is important to note that the initial value of zgfL)JFQ = pﬁk)
(the momentum of time) must be chosen so that equation (11) is satisfied at
k = 0. Theorem 1 is proved by equating the appropriate partial derivatives
of A[AT, Ao, - An—1,%(")] to zero and simplifying the resulting equations.
Apart from the algebraic manipulations involved, the proof is straight for-
ward.

Proof: Assume z(7) is a DTH trajectory. From Definition 2, we have
that for fixed endpoints q(© and p(?), A[] is stationary at #(7). Thus, the



following derivatives of A[-] are equal to zero.

0A

W — 0,]{7:0,1,...]\7—2 (12)
0A
0A
0A
— = 0, k=0,1,... N—-1 15
a)\k b ) ) ( )
where we have used the notation
s w e
okt opl° )
oA | 7 oA | oA | "
Oz(h+1) oA op(©) oA oqN) oA
9z (k+1) ap'szol 1 aq’fzji)l

2n—+2

Equation (12) implies equation (9) as follows. For k = 0,1,--- N — 2 we
have from Definition 2 that
0A _ _ 0 1w\ 5(z® 20
020D 9ghtD) [5 (Z ) J (Z ) T AHET)

+ % (E(k+1)>TJ (E/(k+1)) + )\k+1H(2(k+1)):| Ar

since only the kth and k-+1st terms of A[-] depend on z(**1), Using Lemma 2
to evaluate the derivatives of Z%), z’(*) Z*k+1) and z/(:+1) with respect to

z*+t1) and using the fact that JT = —J, we have
oA
Ozk+1)
1/1N\" ., 1/1 \" 1.\ " oH(@Ez®)
(= z/(F) o — ([ — Nz Z i )
e L (3) a0 2 (L) oo (1)
L1 e, L L N 1) orEsY) |
1 z/(k+1)+2/(k) 1 Z(k+1) _ (k) 1 8H(E(k+1)) a'H(E(k))
A7 5] (f I TE ) e\ Tm P )|




Using the continuity constraint on 2(7) (Lemma 1) and the fact that J? = —I

we can simplify the above expression to

OA zh+D — z(k) 1 OH(zFD) OH(z™)
oz(k+1) AT [J< AT Ak+1 gz(k+1) + A oz (k)

z(k+1) _ 7(k) 1 OH(zZ*HD) OH(zZ™)

T3

AT 2

Since J is nonsingular, d.A/9z* 1) = 0 implies that

zk+1) _z(k) 1 OH(zH D) OH(z)
R M=ot M k=0,1,---N—2

which is equation (9).
Next we use an induction argument to show that equations (13) and (14)
imply (10). Recall that Z*) = (@*), p*)) where G*) and p*¥) are position

and momentum coordinates respectively. From Definition 2,

0A _ 0 [1 (q(o>>T RO % <2(0>>T 1(70) + Ar AOH(Zm))} _

8p(0) - 8p(0) 2
1 AT 0 (/o) = o\ " = op) oM
g0 L 2L ¥ (0) 1(0) _ (5(0) 1(0) et
21 T T 9p® [( ) P (p ) q } AT S 6 550
1 1 AT AT OH
—q0 _ 250 _ 2Lgr0) L 2Ty —
q q 07—
2 2 1 2 0
_a¥—qY AT g AT, OH
4 4 2 " opO®
2 [q . 85“”}
Thus
0.,4 AT _,(0) 8H
on a7 a2
op0 2 PO
Therefore, d.A/9p®) = 0 implies
OH
o' i
q Ao 550 (16)



In a similar fashion we can show that 0.4/ oq®™) = 0 implies

OH
—=/I/(N-1) _
P )\N—laa(N_l)

(17)

Now equation (9) which we have shown to hold true for £k =0,1,--- N — 1,
can be expressed as two equations

gk —g® 1 oH OH
q q® 1
A7 =3 (Akﬂaﬁ(’”” + Ak 35““) (18)
pth) —p®) 1 OH OH
D pY 1
Ar 2 <A’“+1a(—l(k+1> " A’fa(—luc)) (19)

Using the continuity constraints on §(7) and p(7) (Lemma 1) equations (18)
and (19) can be expressed as

a/(kJrl) +a/(k) B 1 OH OH
2 2 Ak op+1) + A opk) (20)
p’/+D) 4 p/) ] OH OH
5~ 3 k+1w + )\kw (21)
Assume for some k, 0 < k < N — 2 that
OH
=/(k) _
Equation (20) implies
OH
—=/(k+1) _
Equation (16) shows (22) holds for k£ = 0. Therefore, by induction
OH
g/ (k) — — ..N —
q )\kaﬁ(k) k=0,1,---N—1 (24)
Now assume for some k, 0 < k < N — 2 that
OH
=/(k+1) _
p R+ = —/\k+1w (25)
Equation (21) implies
OH
5/k) — _\, 2

10



Since by (17) equation (25) holds true for k = N — 2, we have by induction
(k decreasing) that

OH

g™

q

k=0,1,---N—1 (27)
Using symplectic notation, equations (24) and (27) can be combined into
the following equation, which is equation (10).

OH

—1(k _ _
Z/()—Ak-]m ]{I—O,l,N—l

Finally, equation (11) follows easily from 0.4/0\; = 0 since

0A
= —HE®), k=01,---N—1.
o (z™)

To conclude the proof, we observe that each step used in the proof is re-
versible and thus equations (9)—(11) not only are necessary but are also
sufficient conditions for a piecewise-linear, continuous function to be a DTH
trajectory.

For autonomous systems, the DTH equations of motion can be simplified
to the following equations. We use the notation x = (q1,. .. qn, p1, - - .pn)T
Time and the momentum of time are not included. We point out, however,
that the time ¢ (7) must still be determined from the equations (fj1 —
te)/AT = (Agr1 + ) /2 and E; = A\k.

Corollary 1 (DTH Equations for Autonomous Systems) A piecewise-
linear, continuous function X : [, 7n] — R2" is a DTH trajectory of an
autonomous Hamiltonian system H(x), if and only if k) and X'®) satisfy
the following equations:

xk+D) _xk) 1 8H(§(k+1)) aH(i(k))
——— =37 [ M =y + A = k=0,1,---N -2
(28)
_ OH(X®)
k) _ _
x’()—/\kJW k=0,1,---N—1 (29)
Hx™M) - HEDY =0 k=0,1,---N—1 (30)

11



Proof: Equations (28) and (29) follow directly from equations (9) and
(10) of Theorem 1. Since H (x) is autonomous, 0H /0t = OH/Dz,+1 = 0 and
(k) (k)

therefore the momentum of time, Z,,, = p;" is constant. Equation (11)
H(EZR) = p,gk) +H(x®) =0, k=0,1,--- N —1 then implies equation (30).

The constant trajectory Agr1 = — Ak, zk+t1) = Z(%) is always a solution
to equations (9)—(11). For such trajectories, time stands still. The following
theorem gives sufficient conditions for the existence and local uniqueness of
nonconstant DTH trajectories.

Theorem 2 (Existence and Uniqueness of DTH Trajectories) Assume
H € C3(U) where U C R2"*2 is open. Assume also that A\, > 0 and that
there exists a Z°) € U such that H(Z) = 0 and ¥(ZV) # 0 where

W(z) = (IHz) " Haz (TH,).

Then for any positive integer N, there exists a time step At and a lo-
cally unique piecewise-linear, continuous trajectory determined by z*), k =
0,1,...N —1 where Z%) satisfies the DTH equations of dynamics for locally
unique A\, >0, k=0,1,... N — 1.

The proof, which is constructive, is based on the Newton-Kantorovich
Theorem and is given in [14]. We provide an interpretation of the quantity
¥(z) in section 3.

Theorem 2 proves, as has already been observed by T.D. Lee [11], that
a discrete-time formulation can be fundamentally different from the con-
tinuous one. Recall that in the continuous formulation of the principle of
least action, A(7) is indeterminate. Since t'(7) = A(7), there is no preferred
parametrization of time. The local uniqueness of A by Theorem 2 demon-
strates that there is a preferred parametrization of time in DTH dynamics.

3 Properties of DTH Dynamics

DTH dynamics has the interesting property of being both symplectic (at the
vertices z(®)) and energy conserving (at the midpoints Z(*)). The importance
of preserving both symplecticness and energy conservation in discretizing
Hamiltonian systems is illustrated by a theorem often referred to as Ge’s
theorem [3],[2]. Roughly speaking, Ge’s theorem says that a general, energy
conserving, symplectic discretization of Hamiltonian dynamics will yield, up

12



to a reparametrization of time, the exact dynamics. Because symplecticness
and energy conservation do not occur at the same point, DTH dynamics
does not satisfy the requirements of Ge’s theorem. The theorem neverthe-
less illustrates the desirability of preserving both symplecticness and energy
conservation.

3.1 Ge’s Theorem

The reasoning behind Ge’s theorem is as follows [2]. Assume that H(x) is
a Hamiltonian system which does not have any independent first integrals
other than H(x) itself. (This means that if I(x) is conserved along the
flow of H(x) then there exists a function such that I(x) = f(H(x))). Now
assume there exists an energy conserving, symplectic discretization which
approximates the flow of H(x). Since the discretization is symplectic, it can
be represented as the exact flow of a time dependent Hamiltonian H (h,x)
where h is the time step of the discretization [13]. (We assume that the
discretization gives rise to a one parameter family of symplectic transfor-
mations parametrized by the time step h.) Since the discretization exactly
conserves energy dH (x(h))/dh = 0. But

d Td

J; HE(D) = Hx(X(h)) ' X (h) = Hx(%(h)) I H(h, X(h))

dh
Therefore Hy(x) TJ Hy (h,x) =0. Along the exact flow, for fixed h, we have

d ~ ~ d .
S (h, (1) = (b, x(1) Tx(8) = Fe(h x(1)) T H (x(1) = 0

and H(h,x) is a first integral of H (x). But then H(h, x) =f(h, H(x)) which
implies that Hy = (0f/0H) Hx . The vector fields of Hx and Hy are par-
allel and so their integral curves must be reparametrizations of one another.

3.2 Symplectic Property of DTH Dynamics

In the following theorem we construct a generating function which generates
symplectic transformations between vertices of a DTH trajectory.

Theorem 3 (Generating Function for DTH Trajectories) Define

S(AT, q(O)v p(N)) = A[ATv )\07 t )\N—la Z()]

13



where the action Al-] is evaluated along DTH trajectories which satisfies the
boundary conditions §(o) = q9 and p(ry) = p™). Then

0q©®) = P (31)
oS
- o™

where p9 = p(r¢) and ¢V = §(rn).
Proof: For sufficiently small step sizes At, the boundary conditions

d(t0) = q© and p(rn) = p™) determine a DTH trajectory (7). By the
DTH Principle of Stationary Action, along z(7) we have

0A  0A
op©® g

0A

—_— = k: 1...N_1
a>\k 07 07 )

0A

m:O, ]{2:1,2,-'-]\7—1

Thus S(AT, q©®, p®& )) is a well defined function depending only on q(©) and
p™). Now we evaluate 95 / 99, From the above definition we have that

oS 0A

9q©® ~ 9q©® 20)

— LpO0 g aj@) % (E(O)>TJ (7 @) + 2 H(Z(O))} Ar
= 04 (io) ! [(a«»)T (79) - (5)" (qf«nﬂ 4 /\OH(q(O)j(O))} Ar

aq® —10) oq’'© —0) oq®\ oM
(aqm) P 5q0 | P | T2 5q® | 5q0 27

AT 1 1 1 OH
_ O L 2" {2150 _ ( __~ 1)\ e A A
w0+ | (315~ (-51) 2+ (31) e

Since A[] is evaluated along a DTH trajectory, z(7) must satisfy the DTH
equations of motion. Thus, from equation (10) of Theorem 1 we have that
OH

5/00) — _ 2

14



Substituting (34) into (33) and simplifying we have

oS 1 1[AT AT
05 Lo LAToi0 50| - AT
9qm 3P +2[2p +p} 5 P
1 1 AT
— Zp0 L 2|50 _ Z2L51(0)
2P T3 [p o P }
1 1
_ Lo, lo
P TP
~ p©
Similarly,
oS 0A

op@) opW-1 2
AT [ 1 1 AT OH
_ 4ar (N-1) L _yn-p| | BT 1 v
2 [AT 24 ]+ g Woigsvn T (89

Along a DTH trajectory we have that

OH
=/(N=-1) _
q AN-1 o1

Substituting (36) into (35) and simplifying we have

oS 1 AT AT 1
Y —(N-1) =" —/(N-1) 27— (N-1) - (N)
Ip™) z[q 2 4 }jL 2 1 T34

1 AT 1
_ - —=(N-1) 27— (N-1) - (N)
2 {q t5a } a4
1 1
_ v Lo
34 34
— g™

15



3.3 Conservation of Energy in DTH Dynamics

In the next theorem, we show that DTH trajectories exactly conserve the
Hamiltonian function at the midpoints of each linear segment. Note that
the theorem applies even to nonautonomous systems because for such sys-
tems the extended phase space Hamiltonian function H(z) continues to be
conserved at zero even when the Hamiltonian function H(¢,x) is no longer
conserved.

Theorem 4 (Conservation of Energy) The extended phase space Hamil-
tonian function H(z) = zonto + H(z) is exactly conserved along DTH tra-
jectories at the midpoints Z®). For autonomous Hamiltonian systems, the
Hamiltonian function H(x) is also exactly conserved at the midpoint X ®) of
DTH trajectories.

Proof: By equation (11) of Theorem 1, a necessary condition for a tra-
jectory to be a DTH trajectory is that H(zZ*)) = 0 and so H(z) is conserved
at Z%). By equation (30) of Corollary 1, a necessary condition for a trajec-
tory to be a DTH trajectory is that H(X**1) — H(X(®) = 0 and so H(x)
is conserved at X(*).

3.4 Asymptotic Behavior of Time

As described earlier, in the continuous time formulation of Hamiltonian
dynamics, there is no preferred parameterization of time. In DTH dynamics,
the behavior of time is determined by conservation of the Hamiltonian. The
following theorem characterizes the “velocity” of time in DTH dynamics.

Theorem 5 (Asymptotic Behavior of Time) The asymptotic (At —
0) behavior of time in DTH dynamics is invariant under linear symplectic
coordinate transformations and is characterized by the following relationship.

dt
ar (2)

W=

= const

where

(2) = (M) Has (TH,)
(The proof is too lengthy to present here.)

That (z) is not coordinate invariant under nonlinear, symplectic co-
ordinate transformations is troubling from a modeling point of view. This

16



shortcoming makes it difficult to argue that DTH dynamics is more fun-
damental than the continuous theory of Hamiltonian dynamics. It may
be possible to overcome this shortcoming by replacing nonlinear symplectic
transformations by piecewise-linear, continuous, symplectic ones [14].

We show that it is possible to relate ¥(z) to the “acceleration” of the
Hamiltonian function H(z) at the midpoints of a DTH trajectory. Assume
z(7) is a DTH trajectory. Then for 75 < 7 < Tp41 we have

d ~ o~ o~ o~ / o~

H (3(r)) = Ha3()) 7 () = Hy(3(0) 7 W) = M, (2(r) T T, (70)
(37)

The “velocity” of the Hamiltonian H(z) at the midpoints 7 = 7} of a DTH

trajectory is equal to zero since from equation (37)

diTH (z(7)) = MM (2(71)) T H, (2P))

T=Tk

= MH (@) TIH,EZW) =0

(Since, at the midpoints, H(z*)) = 0 also, this implies that a DTH trajectory
is always tangent to the energy conserving manifold.) Now since, z”(7) = 0,
we have for 7, < T < T4

PP T N N . N
TEH @) = (Z(7) Hua(@(7)) (7(7)) + H,(2(7)) 2" (7)
= (29) Har) (2)
At 7 =T,
j—;H G I (z’<k>)T Has (7)) (7))

-
= A (I3N)) Han(@Y) (374,20))
= Xu@E"Y)
Therefore, at the midpoints 7 = T, the acceleration of the Hamiltonian is
ol |
We may reinterpret the asymptotic expression (dt/dr) ¢ (z)? = const of

Theorem 5 in terms of the acceleration of the Hamiltonian function along
DTH trajectories. Since dt/dr = \(T), we have

ERRCIOREERE
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Therefore, in DTH dynamics, we have the following asymptotic relationship
between the “velocity of time” and the “acceleration of energy”.

<dt> <d2H> = const
@) \ar) =

For autonomous systems, (z) does not depend on time or the momen-
tum of time and ¢(z) then reduces to

¢(X) = (JHX)T Hxx (JHX)

For autonomous, linear Hamiltonian systems H (x) :%XTAX, where A is a

symmetric matrix, ¢(x) = (JAx)' A (JAx) is constant along Hamiltonian
trajectories since

L) = wix
T T /

_ ((JA) A (JAx)) x

— 2(x"ATITATIA) JAX

= 2x Mx
where M = —AJAJAJA is a skew symmetric matrix. The skew-symmetry
of M implies that x" Mx =0 and therefore ¢(x(t)) is constant. Theorem 5
suggests that for autonomous linear systems, the “velocity” of time in DTH
dynamics should be nearly constant for small A7. In the following theorem

we show that if A is positive-definite, (e.g. simple harmonic oscillator) then
the velocity of time in DTH dynamics must be constant.

Theorem 6 (Behavior of Time for Linear Systems) Assume H(x) is
a quadratic Hamiltonian function given by

1
H(x) = EXTAx+ b'x+c
where x € N2 and A is symmetric and positive-definite. Assume Ao #
0, X £ 0. If \y and XYV satisfy the DTH equations of motion, then
A1 =+

Proof: We may assume without loss in generality that

H(x) = %XTAX (38)
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since, given any positive-definite quadratic function Q(y) = %yTA y+bly+
c we may use the translation y = x — A~!b to reduce Q(y) to the form
given above plus some constant d = ¢ — %bTA*1 b. (Note that Hamiltonian
functions differing by only a constant have the same equations. Therefore,
without any loss in generality, d may be taken to be 0.)

For Hamiltonian functions of the form (38) one step of the reduced DTH
equations of motion (equation (28)) is given by

x( — xO) = %JA (Alx(l) + on<0>) (39)
S TAGD) - 2O TAK") =0 (10)

(Equation (29) will not be used in the proof.) Equation (39) implies the
following.

1 1 1 T
Z(xMNTA(xDY — Z(xOTA(xO) = = (x(D 4 (0 1) _ x0)) —
2(x ) A(xY) 2(x ) AxY) 5 (X +x ) A (x X )

.
L +x®) A (%mupaw + AOX@)) _
A T
TT()\I — )\0) <X(O)> AJA(X(I))

(We have used the fact that M = AJA is skew-symmetric, and therefore
x "M x = 0 for any x.) Equation (40) implies that

AT

BT 0= 20) (x@) " AJA (x®) =0

Therefore, either A\; = A\g as claimed or

(x(0)>T AJA <X(l)> =0 (41)

Using (39) and (41) we have
<X<o>)T A (Xm) _ (x(m)T A <X<0)> _ (X((J))T A <x<1> _ X<0>> _

(352 () aon (<) + (252) (<) aaa ()

Therefore




From (40)

<X<1>>T A <X<1>> _ <X<o>)T A <X<o>> (43)

Equations (42) and (43) imply that

(Xu) N Xm))T A (Xa) N X<o>> _

T T T
(x(l)) A (x(l)) -2 (x(l)) A (x(o)) + (x(o)) A (x(o)) =0
Since A is positive-definite, we must have x(1) = x(©). Substituting x(©) for
x(M in (39) we have

0 % IA (x4 2x®) = w TAxO

Since JA is nonsingular and x(0) = (0 we must have A\; = — )¢ as claimed.

For autonomous, positive-definite, linear systems, Theorem 6 states that
the only nonconstant solution to the DTH equations is the one for which
Ag+1 = Ap. If we choose A\g = 1, then by induction, the nonconstant solu-
tion must have A\, = 1. If A\; = 1, equation (28) reduces to the trapezoid
method and equation (29) reduces to the midpoint method. We conclude
that for autonomous, positive-definite, linear Hamiltonian systems, such as
the simple harmonic oscillator, DTH trajectories are given by the trapezoid
and midpoint rules commonly used to integrating differential equations.

3.5 Linear Symmetries

The following theorem shows that all quadratic conservation laws are repro-
duced exactly at the vertices of DTH trajectories.

Theorem 7 (Quadratic Conservation Laws) Assume that L(x) is a quadratic

function given by
17 T
L(x) =5 Ax+b'x+c

and assume the Poisson bracket [L, H] = L] JHy is identically equal to
zero. Then L(x) is exactly conserved at the vertices of DTH trajectories.
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Proof: We will show that

L(x*+D)—L(x(*)

AT =0
We have that
L(xF+D)—L(x(#)
AT N
1 (lx(kﬂ)TAX(kH) _ LT Ax®) L pTxED) _bTx(k:)> _
AT \ 2 2

kD) B\ A D) _ () b7 x(b+D) —x()
2 AT AT N

(=) & (X9 +b7 (x) = {(ﬁw)T A+ bj 20 _

L, (i(k) ) Ti’ (k) )

Equation (29) implies that for DTH trajectories, X'*) = N\ JH,(X*).
Therefore
Ly (X)) T ®) = 2\ Ly (k) TIH, (X)) = 0

and thus (L(x(k+1))—L(x(k))) JAT = Ly (x0T (F) = 0,

3.6 Coordinate Invariance

Ge has shown that the midpoint scheme (among others) is invariant under
linear symplectic coordinate transformations [2]. We show that DTH dy-
namics is also invariant under linear, symplectic coordinate transformations.

Theorem 8 (Linear Coordinate Invariance) Consider the Hamiltonian
function H(z) and the transformed Hamiltonian K(y) =H(Ty) where z = Ty
s a linear symplectic coordinate transformation. The DTH equations for
K(y) are the same as the transformed equations of H(z).

Proof: First, we note that since T is symplectic, T'J T = J. This implies
that TJT' = Jalsosince T'JT=J, T'JTJT' =J2T", T'JTIJT' =
T
~TT, J(THITTITIT" = -J(T")IT , and therefore TIT' =J.
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From Theorem 1 the DTH equations for K(y) are

F+1) _ k) O (F k1)) K (F™)
Y yoo 1 y y _ N —
A—T = 2.] Ak+1 y(k+1) + A 8y(k) k=0,1, N -2
(44)
- oK (F™)
1(k) — —0.1.---N—
v/ = \J =0 k=0,1,---N—1 (45)
KF*)y =0 k=0,1,---N—1 (46)

Since y = T~ 'z, and 9K (y)/dy = T ' 9H(z)/0z we have from (44) that

z(k+1) _ Z(k)
AT

oH(zZHHD) OH(z)
oz k+1) k 97k

1
= 5TJTT Net1

The symplecticness of T implies that TIT' = J. Similarly, since

k+1 k k+1 k
yED -y ® e B

< /(k) —
Y AT AT

equation (45) becomes

+OH(Ez®)
Z/(k) — TJT' ——— 7
M ozk)

and again the symplecticness of T implies TJT ' = J. Finally, since
FH) = HTY®) = HTT12) = H(EH)
from equation (46) we have

H(ZR) =0

We remark that it is in fact possible (at least formally) to show that
DTH dynamics (and the midpoint scheme) are coordinate invariant under
a much larger class of piecewise-linear, continuous, symplectic coordinate
transformations which are consistent with a special triangulation of phase
space [14].

22



3.7 Variable-Step Symplectic Integration

Recently, Hairer [7] has described a “meta-algorithm” for constructing variable-
step symplectic integrators. It is possible to interpret DTH dynamics as

a special instance of this meta-algorithm. Consider a Hamiltonian sys-
tem with extended phase space Hamiltonian H(z). It is possible to show
that the Hamiltonian KC(z) =\(z)H(z) where A(z) is a scalar function of z,
reparametrizes the time ¢ of H(z) according to the equation dt/dr = A(z(7)).

It is also possible to show that a constant 7 time step discretization of K(z)
corresponds to a variable ¢ time step discretization of H(z) where the func-
tion A(z) determines a time step selection strategy for ¢. The trajectory z(7)

is determined by the equations:

% )
— A@)TH(2)+H(2) T\ (2) (47)

perturbation

Along the exact trajectory H(z(7)) =0 and the perturbation term in equa-
tion (47) drops out. Along DTH trajectories H(z(7y)) = 0 and it is possible
to show that this perturbation term also drops out for DTH trajectories.
It should be stressed that for the case of DTH dynamics, A(z) is not de-
termined apriori, but is only determined asymptotically as AT — 0 by the
requirement H(z(7y)) = 0. From Theorem 5, A(z) is given by the expression

Az) = cow(z)_% where 1(z) = (JHz) | Hzz (JHz) and ¢, is a constant.

4 Concluding Remarks

We have seen that DTH dynamics reproduces, in some form, several of the
distinctive properties of Hamiltonian dynamics. These include symplectic-
ness, exact conservation of the Hamiltonian, preservation of quadratic con-
servation laws and coordinate invariance with respect to linear, symplectic
coordinate transformations. A property of DTH dynamics not possessed by
Hamiltonian dynamics is the dynamic behavior of time. This property needs
to be explored further.

We have chosen in this paper to view DTH dynamics from a discrete
modeling perspective, focusing on properties instead of error analysis or
computational efficiency. Simulation results for the simple pendulum and a
one-degree of freedom inverse-square-law system are given in [15]. Simula-
tion results for Kepler’s problem are given in [14]. A detailed error analysis
and a computational efficiency study have not yet been completed.
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For small time steps, the DTH equations are not as easy to solve as
the equations of the implicit midpoint and trapezoid schemes. Computer
simulations run to date have used a nested Newton iteration scheme, first
to solve for Z*) and then to solve for ;. Quadratic convergence of the
nested iterations is proved in [14] and described in detail in [15]. Recently,
Ander Murua [12] has suggested that more efficient solution techniques are
possible. These are currently under study.
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