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Abstract

An energy conserving, symplectic discretization of Hamiltonian dy-
namics is obtained by diseretizing the principle of least action in extended
phase space. The resulting piecewise-linear, continucus trajectories ex-
actly conserve the Hamiltonian at the midpoints of each linear segment.
The discrete action generates symplectic transformations between the ver-
tices of the trajectories. Conserved quadratic functions are exactly con-
served at the vertices. As in the discrete mechanics of T.D. Lee, time
is a dependent dynamic veriable. Existence and uniqueness results are
presented as well as some preliminary results on coordinate invariance.

1 Introduction

For both theoretical and computational reasons, discrete medels have received
increased attention in recent yeats. Dilemmas that the concept of infinity can
introduce in contiruous models are described by Greenspan [4],[5}. Horzela et
al. [6] discuss discrete models of space-time and their associated properties.
Because Hamiltonian dynamical systems arise naturally in classical mechanics,
quantum mechenics and statistical mechanics, as well as in other aveas such as
optimal control theory, discrete models of Hamiltonian dynamical gystems are
of considerable interest. )

Hamiltonian dynamics has several very distinctive properties which ideally
should be reproduced by discrete models. The Hamiltonian function is always
conserved. (Note that, when formulated in extended phase space, this prop-
erty holds true even for nonantonomous systems.} The trajectory flow in phase
space is always a symplectic transformation of the initial conditions. (For sys-

- tems with one-degree of freedom, this property is equivalent to the requirement
that the trajectory flow always preserve the phase space area of any set of ini-
tial conditions.) Often, Hamiltonian systems have symmetries which give rise



to conserved quantities such as linear and angular momentum. Ideally, discrete
models should reproduce these symmetries whenever they are present. Hamil-
tonian dynamics is invariant under symplectic coordinate transformations. Ide-
ally, discrete models should exhibit some similar form of coordinate invariance.

Discrete models which are symplectic can be represented exactly by a Hamil-
tonian function. This property of symplectic models is useful for proving the-
oretical results about computer simulations of Hamiltonian dynamics. (An ex-
cellent introduction to symplectic methods for Hamiltonian systems is given by
Sapz-Serna and Calvo [11].} A theorem due to Ge [2] illustrates the difficulty
of formulating a general discrete model which is both symplectic and which ex-
actly conserves the Hamiltonian. We will discuss this theorem in more detail in
section 3.

Since Hamiltonian dynamics has a variational formulation, discrete models
can be constructed by discretizing variational principles. A recent survey of
models based on discrete variational principles is given in [14). The discrete
model proposed in this paper is similar to one proposed by T.D. Lee [9],[8] and
later modified by D'Innocenzo et el. [1]. A distinctive feature of these models is
that time is a dependent dynamic variable. This feature is in contrast with the
continuous theory where time is an independent parameter. In fact, T.D. Lee
suggests that the discrete model may be more fundamental than the continuous
one. The discrete models have an asymptotic distribution for time which can
not be recovered from the continuous model alone. We deseribe this property
in more detail in section 3.

The discrete models developed by Lee and D’Innocenzo el al. are for New-
tonian potential systems and are constructed in a Lagrangian framework. The
discretization we deseribe in this paper is applicable to arbitrary Hamiltonian
systems and is constructed by discretizing a version of the principle of least
action in extended phase space. We will refer to the discretization as “DTH
dynamics”, DTH being an abbreviation of “Discrete-Time Hamiltonian”

The principle of least action has several equivalent formulations [3],[7],{13].
Once discretized however, these different formulations may no longer be equiva-
lent to one another. DTH dynamics is based on a discretization of an extended
phase space formulation of the principle of least action described below. Addi-

" tional motivation for choosing this particular formulation is given in [13].

Consider an n-degree of freedom Hamiltonian system with Hamiltonian func-"

tion H{¢,q1,- - - Gn,P1, - - - Pr) Where ¢ represents time and (g1,...¢a) " and (p1,...7a)7

are position and momenturm coordinates respectively. Let q = (g1, ... qn,t)" and
P = (p1,. - Pn.Pt)| Wwhere p, is the momentum of time. (See [3],[7],[13) for a
description of p;.) Define z = (q, p)T to be coordinates in extended phase space.

The extended phase space Hamiltonian function corresponding to H(t,qi, . - - gnP1,y - - - Pn)

is defined by
. H(Z)=Pg ‘*‘H(tr‘Il:---Qn:Ph---Pn)
CAnsider the extended phase space action integral defined by

Aps(r)] = f’ ") 32 () dr 1)

)



/

where J is the skew-symmetric matrix

(1) “

and T is the n -+ 1 by » + 1 identity matrix.

Definition 1 (Principle of Least Action) The trajectory z(r) of ¢ Hamil-

tonian dymemical system with Hamiltonian function H(z) causes the action inte-

gral Alz(7)] to be stationary under the boundary constreinis a(7,} = qo, p(75) = p;

and the Homiltonian constraint H(z(r)) = 0.
We can obtain Hamilton’s equations of motjon from Definition 1 by intro-

ducing Lagrange multipliers for the Hamiltonian constraint H(z{r)} = 0 and
writing down the appropriate Euler-Lagrange equations.

A[M(7),2(7)] = [1 (% z(r)T J2'(7) +A(T)H(Z(T))) dar

. The Lagrangian is given by

LA z,2) = % a(r) TI2 () + A(r) Ha(r))

and the Euler-Lagrange equations are -

d (oL aL

#(3)-% = @

d (8L oL

w(ov)-% = ° @
Equation (2) yields Hamilton's equations of motion

2'(r) = Mr) T H,{(z(r)). (4)

Equation (3) yield the Hamiltonian constraint
H(z(r)) =0 )

Equation (5) is not independent from equation (4) since Hamilton’s equations of
motion independently conserve the Hamiltonian. Thus, A(7) is indeterminate.
Since the equation for time is ¢ (7) = A{(7)Hp, (z(7)) = A(7), the "velocity” of
time is indeterminate in the continuous formulation of Hamiltonian dynamics.
This is not the case for the discretization described below. ‘We will discretize the
principle of least action given in Definition 1 by replacing the trajectory z(7)

by & piecewise-linear, continuous trajectory Z(7) and enforcing the Hamiltonian

nstraint only at the midpoints of the piecewise-linear trajectory.
We begin in section 2 by introducing notation for describing piecewise-linear
trajectories. Then we state the DTH principle of stationary action, the discrete



variational principle used to define DTH dynamics. Equations of motion are
derived and existence and uniqueness results are presented. In section 3 we
describe several properties of DTH dynamies. First, we show that the discrete
action in Definition 2 generates symplectic transformations between vertices of
DTH trajectories. We describe Ge's theorem and explain why the theorem does
. not preclude DTH dynamics from exactly conserving energy. We describe the
asymptotic behavior of time in DTH dynamics. The preservation of quadratic
conservation laws is proved. Finally, invariance with respect to linear, symplectic
coordinate transformations is demonstrated.

2 Foundations of DTH Dynamics

Assume the points 7, & =0,1,--- N partition the interval [y, Ta] into /N equal
intervals of length Ar = (ry — 70)/N. Assume Z : [r0,7n] — Rt isa
piecewise:linear, continuous function of T as shown in Figure 1 where z(® =
Z(7x) are the vertices of 2(r). Clearly, 2(+) is completely determined by its

Z(k+])

74

Figure 1: A piecewise-linear, continuous trajectory Z(7).

vertices z!*). Define

z(k"'l) + z(k}

20 = FR(GHD ) = : (6).
(k+1) _ (.':}
=K — R k) Ry 2 "%

where k.= 0,1,--- N — 1. Since #(7) is piecewise-linear, it can be expressed in
terms of the values of Z(*) and Z’(*) in the following way.

Z6) 4 s My 7 _ ~
o [ 7R 42N r—Ty) LT <y k=0,1,---N-1
o) = { S o ®
1

“where
= _ Te41+ 7
T =

2



The following lemmas will be used in the proof of Theorem 1. The continuity of
%(r) implies that Z(*) and Z/(*) must satisfy the following continuity constraint.

Lemma 1 {Continuity Constraint) A piecewise-linear funclion z(7) is con-
tinuous if and only if

1) _ 3R ZiCkrl) 4 pet)
Ar - 2
The proof of Lemma 1 is given in [12].
Lemma 2 From (6) and (7) it follows that for k=0,1,---N —1

az*) 1 &z’ (%) 1
58 T3 B T Ty 122
&M 1 az'*) 1

HD ~ gl Gy T A e
where Io, 2 i3 the 2n 4 2 by 2n + 2 identily matriz.
. The following discrete variational principle is used as the definition of DTH
dynamics.

Definition 2 (DTH Principle of Stationary Action) A DTH trajectory is
a piecewise-linear, conlinuous function 2 : [ro, 7n] — R2+2 for which the sum:

- 1 T
A[AT, Moy - Ao, 2()] = E(q(m) p©@ 4+

Nf [% (#9) 3 (z9) + A,iu(zw)] Ar +

3=0
1 T
Z (g™ (M)
2 (q_ ) P
is stationary. The endpoints q¥ and p} are assumed fixed. For a Hamil-

tonian system with a Hamiltonien function H(t,q1,..-Gn,P1,--.Pn) , the func-
tion H(z) is defined to be :

H(Z) =P + H(t'l 01;---9nsP1y- - 'pn)

The variable A; in Definition 2 is a Lagrange multiplier for the Hamiltonian
constraint 7(Z9}) = 0. Observe that the discretization enforces this constraint
only at the midpoints Z}. The equations of motion for DTH dynamics are given
by the following theorem. -

Theorem 1 (DTH Equations of Motion) A piecewise-linear, conlinuous func-
tion % : [r9,7n] — K22 is ¢ DTH trojectory if and only if 2% and Z'(F)
satisfy the following equations:

B 5 aHERY)  amHEw)
TE TP | g M gm | ke0beN-20)



= OH(FM)

7k —

z(]_,\kJ_ﬁ_ £=01,---N—1 (10)
HEZ®)=0 £=0,1,---N—1 (11)

Theorem 1 says that Definition 2 completely determines the values of 2%} and
7% for k =0,1,--- N —1 which, by equation (8) implies Z(7} ia completely de-
termined also. (Existence and uniqueness questions will be addressed later.) It is
important to note that the initial value of 25:)_‘_2 = pskj (the momentum of time)
must be chosen so that equation (11) is satisfied at k¥ = 0. Theorem 1 is proved
by equating the appropriate partial derivatives of A[AT, Ag,--- An_1,2(-)] to
zero and simplifying the resulting equations. Apert from the algebraic manip-
ulations involved, the proof is straight forward.

Proof: Assume 2{1’) i1s & DTH trajectory. From Definition 2, we have that
for fixed endpoints q'% and p(®, A[] is stationary at (7). Thus, the following
derivatives of A[-] are equal to zero.

dA )
e — 0 k=01..N-2 (12)
aA
B0 0 a3)
a4
3™ 0 (14)
84
m - U’k_o,!l;--.N—]_ (15)
where we have used the notation
8A oA e
L B oA _ ! BA ft ‘
S '7—78;1 8p® 84 aq(™) 84
ot N i
ni1 7

2nt+d

Equation (12) implies equation (9} as follows. For k = 0,1,--+ N — 2 we have.
from Definition 2 that

A — 2 1/ k T it ={K
I [5_(-,4 )73 (%) + aurea)

+ % (E{k-l-l))T 3 (-z-f[k+1)) L AHI.H(E(J:H))] Ar

since only the kth and k+1st terms of A[-] depend on z{**+Y), Using Lemma 2 to
evaluate the derivatives of 2%, 2'(8), g+1) apd Z/*:+1) with respect to z(-+1)
arid using the fact that JT = —J, we have

; - A
Jzlk+1) T

6 .



I 1 T —I(k] 1 1 T _(k) 1 T a?{(i{k))
“"’{5 (37) 5=+ 3 (2 1) 0 en(31) s
1N o o 101N gystern 1p) gr@E™Dy
§(51) JZ +-2- “Ar ) (-0)z + Ak (51) 6‘2"‘“)

. _1 T 1 {3+ _5R) 1 aH(E(k+1)) BH(E("'))
o [EJ (__"2'__)+§J T ) ta{ M gEm T eem )|

Using the continuity constraint on Z(7) (Lemma 1) and the fact that J2 = —I
we can simplify the above expression to

8A Z6HD _g) 1 oHE*) | aHER)
G~ A7 [‘I( Ar T | Mt m

zZ:H) g0 FHE) | aHE™)

= ard [(T) T3 (""“ o=

" Since J is nonsingular, 3A4/92*+1 = 0 implies that
(k+1) _ (k) =(k+1) =(k)
z z 1.1(,\;:4,16”(2 ) 0E )) k=0,1,--N—2

T oar 2 L B>

which is equation (9).
Next we use an induction argument to show that equations (13) and (14)
imply (10). Recall that Z* = (g%, p(*)) where G*) and p**) are position and

momentum coordinates respectively. From Delinition 2,

2= [5(40) 5+ 57 (20) 3 () + ara®) -

1 AT 3, T ap'9 on
q© O) 510 — (50) g/
24 T apm [(q ) PO-( ) }*’A"A“ap(m F=Ohe
1 Ar oM -
1@ _Lls@ _ ATz, AT
2“ 21 T "“aﬁm)
W_q® A AT, BH
- Sk AP () B WL L S
1 P R0
_ 7 |1 g
Thws 9A A o
- AL [ O
; ap0® 2 [“ "“aﬁtm]'



Therefore; 3A/8p® = 0 implies
IH

' —
In a similar fashion we can show that 9.4/8q") = 0 implies
. 8H
=1{N-1) _
5 )_—,\N_lm (17)

Now equation (9) which we have shown to hold true for £ =0,1,.-- N —1, can
be expressed as two equations

Gistl) _ &k}

q =-q 1 H FH

—-—-—--—AT = § (Ak+1 aI_J(k_I_U + *\k aﬁ(k)) (18)
ptl —p® 1 oM H

P P

—-AT = —§ ( k+1 3C_l(k+1] + /\k ac_l{k)) (19)

Using the continuity constraints on §{r} and $(7) (Lemma 1} equations (18)
and (19) can be expressed as

g/l gl 1 aH H
T = § -’\k-i-l 313("4'1) + Aj; aﬁ(k} (20)
ﬁf(k+l} o f,"(k) 1 FH gH
»—-—-——2 = —§ Ak+1 3q(k+!) + A aﬁ(k) (21)
Assume for some k, 0 <k < N — 2 that
p— 6H
Equation {20) implies
. _ aH
q.r(k+1) - Ak+1m (23)
Equation (16} shows (22) holds for k = 0. Therefore, by induction
— GH
g’k =Akaﬁ(k] k=0,1,---N -1 (24)
Now assume for some &k, 0 <k < N — 2 that
oH
--f(k-i-l) — _’\ . 25
P k+1 ac_l(k+1) ( )
A
- Equation (21) implies
’ . IH
=k
1k} — —Ak@ (26)



Since by (17) equation (25) holds true for £ = N — 2, we have by induction {(k
decreasing) that

O —p,1,--N—1 (27)

5106 o _y, O
P = Mo

Using symplectic notation, equations (24)-and (27) can be combined into the
following equation, which is equation (10).

OH

z'(%) =).ka k=0,1,---N—1
Finally, equation (11) follows easily from 8.4/8Ax = 0 since
A _ 4 _ _
oa = HE®), k=01.N-1.

To conclude the proof, we observe that each step used in the proof is reversible
and thus equations (9)-(11} not only are necessary but are also sufficient con-
_ditions for a piecewise-linear, continuous function to be a DTH trajectory.

a

For autonomous systems, the DTH equations of motion can be simplified to
the following equations. We use the notation x = (g1,..-@n,P1,- . - p,,)T. Time
and the momentum of time are not included. We point out, however, that
the time £(r) must still be determined from the equations (1 — Ex)/AT =
(Ak+l + Ak)/Z and E’k = Ag.

Corollary 1 (DTH Equations for Autonomous Systems) A piecewise-linear,

continuous function X : [rg, Tn] — 2N s o DTH trajectory of an autonomous
Hamiltonion system H(x), if and only if T%) and X' satisfy the following
egquations:

xR g BH(EWY) = aH(EW)
—ar  — ¥ (M @ | E=0 LN =2
w0 (28)-
i'(kl=).,,.1%k)—) k=01,---N-1 (29)
HEF) - HEOY=0 k=0,1,---N -1 (30)

- Proof: Equations (28) and (29) follow directly from equations (9) and (10) of
Theorem 1. Since H{x) is autonomous, 3H/8t = 0H/8zn4.1 = 0 and therefore
-the momentum of time, 2(2’;_)4_2 = pf‘) is constant. Equation (11) H(Z*) =
pi‘k) + Hx¥)) =0, k£=0,1,---N — 1 then implies equation (30).

a



The constant trajectory Apy1 = —Ap, 251 = 28 is always a solution
to equations (9)-(11). For such trajectories, time stands still. The following
theorem gives sufficient conditions for the existence and local uniqueness of
nonconstant DTH trajectories.

~ Theorem 2 (Existence and Uniqueness of DTH Trajectories) AssumeH
€ CYU) where U C R2™*2 is open. Assume also that A, > O and that there
ezists a 7 € U such that H(Z®) = 0 and P(z™) # 0 where

B(z) = (M) Hea (IHz).

Then for any positive integer N, there exists a lime step A7 and @ locally unique
pleceurse-linear, continuous lrajectory determined by z®), k= 01,..N-1
where Z¥) sqtisfies the DTH equations of dynamics for lacaﬂy unigue /\k >0,
k=0,1,..N—-1.

The proof, which is constructive, is based on the Newton-Kantorovich The-
orem and is given in [12). We prowde an interpretation of the quantity ¥(z) in
section 3.

Theorem 2 proves, as has already been observed by T.D. Lee 9], that 2
discrete-time formulation can be fundamentally different from the continuous
one. Recall that in the continuous formulation of the principle of least action,
() is indeterminate. Since t'(7) = A(7), there is no preferred parametrization
of time. The local uniqueness of A; by Theorem 2 demonstrates that there is &
preferred parametrization of time in DTH dynamics.

3 Properties of DTH Dynamics

DTH dynamics has the interesting property of being both symplectic (at the
vertices z(*)) and energy conserving (at the midpoints Z®). The importance of
preserving both symplecticness and energy conservation in discretizing Hamil-
tonian systems is illustrated by a theorem due to Ge [2]. Roughly speaking,
Ge's theorem says that a general, energy conserving, symplectic discretization
of Hamiltonian dynamics will yield, up to & reparametrization of time, the exact.
dynamics. Unfortunately, because symplecticness and energy conservation do
not occur at the same point, DTH dynamics does not satisfy the requirements
of Ge’s theorem.

The reasoning behind Ge’s theorem is as follows [2]. Assume that H(x)
is a Hamiltonian system which does not have any independent first integrals
other than H(x) itself. (This means that if Z(x) is conserved along the fiow of
H(x) then there exists a function such that I(x) = f(H(x)})). Now assume there
exists an energy conserving, symplectic discretization which approxdmates the
fowol H (x). Since the discretization is symplectic, it can be represented as the
* exact flow of a time dependent Hamiltonian H(h,x) where h is the time step
of the discretization [11]. (We assume that the discretization gives rise to a one

10



parameter family of symplectic transformations parametrized by the time step
h.} Since the discretization exactly conserves energy dH(X(h))/dh = 0. But

T H(R(R)) = L (E(R) T --5(h) = BLo((r)) T3 B, X(0)
- Therefore M (x) TJ Hy(k,x) =0. Along the exact flow, for fixed &, we have
L H (R x(2)) = Bre(h, x(0) T3 x(8) = Bielfyx(2)) T L (x(2)) =0

and H(k,x) is & first integral of H(x). But then H(k, , X) =f(h, H(x)) which
implies that H, = (8f/6H) H, . The vector fields of H,. and Hy are paralle]
and so their integral curves must be reparametrizations of one another.

Even though DTH dynamics does not satisfy the requirements of Ge’s the-
orem, the theorem, nevertheless illustrates the desirability of preserving both
symplecticness and energy conservation. In the following theorem we construct
a generating function which generates symplectic transformations between ver-
tices of a DTH trajectory.

" Theorem 3 {Generating Function for DTH Trajectories) Define
S(AT: q(m’ p(N]) = A[ATI }"0: e ’\N—-ll i()]

where the action A[] is evaluated slong DTH trajectories which satisfies the
boundary conditions () = q(® and p(rn) = pN). Then

a5
— (@)
o8
sy = =)

where p® = p(rg) and g™ = G(rp).

Proof: For sufficiently small step sizes A7, the boundary conditions §(7g) =
q® and p(ry) = p™Y) determine a DTH trajectory (7). By the DTH Principle
of Stationary Action, along Z(7) we have

8A 0A

3p©® ~ g™ =0
0A
6,\;,_0 k=01, N—l
A
m=0, k=1,2,---N—1

Thus S{ar,q@,pt™") is a well defined function depending only on q‘® and
. p“,(N ). Now we evaluate 85/8q ). From the above definition we have that

' 88 8A
3q@ " 3q® ot

11



1 o, Ar [(55® 33’ a7\ om
Y (1) el Qq —=s(0) _ q ={0) q
= 3P + 2 [(3(1(9)) P (aq(O) )P ]+’\° (aq(o} og® Ar
1 Ar {1 aH
= p®W 2 ([Zy)lg @ . { . —1)\5©
0+ 5[0 - ()P0 e (@)oot @

Since A[] is evaluated along a DTH trajectory, Z(7)} must satisfy the DTH
equations of motion. Thus, from equation (10) of Theorem 1 we have that

aH

5O — 3, 9
P =~

(34)

Substituting (34) into (33) and simplifying we have

95 Loy AT—r(OJ +59] - &75n0
oql0) 2 *a 2
1 AT
= 1o =@ _ BT_10)
LpO + 2[ = ]
1 1
= Zp0 4 —,0
= p@
Similarly,
as 8A

FptM) — gptM lz()

a 11 T 1
= | (a1 w(N-1}) (V1) —alM
[2 (z ) J (z ) + -1 H(Z )] AT+ 54

o

- o [ ) ) @)
An—1 (35;’;)1)) a;:f_ AT+ %q(h’}

- 925 [ia‘”“” ;ﬁ"”‘”] +%I/\N-lga:f__-”+ ;q(”i (35)

Along a DTH trajectory we have that
A

g = Avo (36)

12



Substituting (36) into (35) and simplifying we have

aﬁ_% — % [q{u—u _ éz,"_'-cir(w_n] +%"_'q;(n—1) +éq(~) -
1 AT 1
= Il ven BT w-n| .1 v

1 1
_ w1

2% +3d
= M

o

In the next theorem, we show that DTH trajectories exactly conserve the
Hamiltonian function at the midpoints of each linear segment. Note that the
theorem applies even to nonautonomous systems because for such systems the
extended phase space Hamiltonian function H(z) continues to be conserved at
zero even when the Hamiltonian function H (%, x) is no longer conserved.

' Theorem 4 (Conservation of Energy) The extended phase space Hamiltonian

Junction H(z) = zapi 9+ H(2) is ezactly conserved elong DTH trajectories al the
midpoints Z*). For autonomous Hemillonian systems, the Hamiltonian func-
tion H(x) is also exactly conserved at the midpoint X*) of DTH trajectories.

Proof: By equation (11) of Theorem 1, a necessary condition for a trajectory
to be a DTH trajectory is that H(z®)) = 0 and so H(z) is conserved at Z(*.
By equation (30) of Corollary 1, a necessary condition for a trajectory to be a
DTJI:[ trajectory is that H(X*¥V) — H(X¥) = 0 and so H(x) is conserved at

X

0

As deseribed earlier, in the continuous time formulation of Hamiltonian dy-
namics, there is no preferred parameterization of time. In DTH dynamics, the
behavior of time is determined by conservation of the Hamiltonian. The follow-
ing theorem characterizes the “velocity” of time in DTH dynamics. -

Theorem 5 (Asymptotic Behavior of Time) The asymptotic (A — 0)

behavior of time in DTH dynamics 1s invariant under linesr symplectic coor-
dinate transformations and is characterized by the following relationship.

di 1

Eq:v,b(z) = const
where
A W(z) = (THz) " Haz (IH)
(The proof will be published elsewhere.)

13



We show that it is possible to relate 9(z) to the “acceleration” of the Hamil-
tonian function H(z) at the midpoints of a DTH trajectory. Assume Z{7) is 2
DTH trajectory. Then for 7 < 7 < Tey1 we have -

d —~ o~ .
SHE() = Ha(Er) T2 ) = HalBr)Z Y = MH BN I, (79)
(37)
The “velocity” of the Hamiltonian 7(z) at the midpoints v = 7 of a DTH
trajectory is equal to zero since from equation (37)

MHA(E(T)) I Ho (7))
= MHEM)TIH, (X)) =0

Since, at the midpoints, 2(Z(*) =0 also, this implies that a DTH trajectory is
always tangent to the energy conserving manifold. Now since, 2”(r) = 0, we
have for 7, < T < Tieg1

d
E_TH (*Z\(T)_)

LHEE) = @) Huslllr) @) + HelBr)E0)
= (‘z'{k)) T Hen(Z(7)) (E’(k))

At =T,

& M)

- () e ) )

= X (J'H,,(z(*l)) H,o (70 (.m,(z(*}))
= MvE")

=Tk

Therefore, at the midpoints T = Ty, the acceleration of the Hamiltonian is
X p(E").

We may reinterpret the asymptotic expression (di/dr) 1,(:(2)% = const of .

Theorem § in terms of the acceleration of the Hamiltonian function along DTH
trajectories. Since dt/dr = A(T), we have

[ - (3 &) - 2]

Therefore, in DTH dynamics, we have the following asymptotic relationship
between the “velocity of time” and the “acceleration of energy”.

; @\ [ dH
\ (3? (F) = const

"~ That (z) is not coordinate invariant under nonlinear, symplectic coordinate
transformations is troubling from a modeling point of view. This shortcoming

14

/"‘1



makes it difficult to argue that discrete mechanics is more fundamental than
continuous mechanics. It may be possible to overcome this shortcoming by
considering piecewise-linear, continuous, symplectic transformations in place of
nonlinear ones [12].
For autonomous systems, ¥(z} does not depend on time or the momentum
_of time and (2} then reduces to

$(x) = (JHy) " Hooe (JH)
For autonomous, linear Hamiltonian systems H(x) =ix7 Ax where A is a sym-
metric matrix, ¥(x) = (JAx)" A (JAx) is constant along Hamiltonian trajec-
tories since
d
SHx) = #IxX
_
= 2 ((JA]TA (JAx)) X
= 2(x"ATITATIA)JAx
_ = 2x Mx
where M = —AJAJAJA is & skew symmetric matrix. The skew-symmetry
of M implies that xTMx =0 and therefore 4(x(2)) is constant. Theorem 5
suggests that for antonomous linear systems, the "velocity” of time in DTH
dynamics should be nearly constant for small Ar. In the following theorem we

show that if A is positive-definite, (e.g. simple harmonic oscillator) then the
velocity of time in DTH dynamics must be constant.

Theorem 6 (Behavior of Time for Linear Systems) Assume H(x) is a quedratic

Hamiltonian function given by

H(x) = %xTAx +bTx+¢
wherex € R2" and A is symmetric and positive-definite. Assume Ag #0, (@ £
0. If A and X satisfy the DTH equations of motion, then )y = +).

Proof: We may assume without loss in generalify that N
H(x) = -%xTAx (38)

since, given any positive-definite quadratic function Q(y) = Ly TAy+bTy+¢
we may use the translation y = x — A~1b to reduce Q(y) to the form given
above plus some constant d = c— 1bT A~1b. (Note that Hamiltonian functions
differing by only a constant have the same equations. Therefore, without any
loss in generality, d may be taken to be 0.)

. For Hamiltonian functions of the form (38} one step of the reduced DTH
equations of motion (equation (28)} is given by

x0 —x = %JA (,\pc(" + ,\ox("l) (39)
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SO TAG) ~ 2 TARO) =0 (40)

(Equation {25) will not be used in the proof.) Equation (39) implies the follow-
ing.

1 1 1 T
—{x{INT )y _ {0 T Oy = — {41} (@ (1) _ 0 =
2(x 3 A{(xY) 2(:\: Y AX™) 3 (x +x ) A(x x )

1 T AT

= {1 (0} hunldl {1) o) =

5 (x +x ) A( ) JA( X' + px ))

Fay T
-0 = %) (xml) AJAGD),

(We have used the fact that M = AJA js skew-symmetric, and therefore x™ M x =
0 for any x.} Equation (40) implies that

%I(A; - o) (x(‘”) TATA (x“)) =0
Therefore, either A; = Ag as ¢laimed or
(xf"))TAJA (x“)) =0 (41)

Using (39) and (41) we have

(xm))T A (x(n) - (xm)T A (xw)) (x(o}) (xm _ x(o)) _
(é’;_."l) (x (0)) AJA (<) (AT"‘O) (oa) AJA (<) =0

Therefore

(xm)) (xm) (x(u))T A (xw)) “2)
From (40}
(A6

Equations (42) and (43) imply that .

(1 —x) "a (et - X0 =

)" A ) -2(:) 6 + ()4 () o
Since A is positive-definite, we must have x{1} = x{9. Substituting x© for x(¥)

in (39} we have

CA Ar ()\1 + )\n)

= %IJA (Apc“’) + Aax“’)) = JAXO

Since JA is nonsingular and x{ £ 0 we must bave A; = —); as claimed.
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For autonomous, positive-definite, linear systems, Theorem 6 states that the
only nonconstant solution to the DTH eqquations is the one for which A1 = Ax.
If we choose Ay = 1, then by induction, the nonconstant solution must have ;. =
1. If Ax =1, equation (28) reduces to the trapezoid method and equation (29)
reduces to the midpoint method. We conclude that for autonomous, positive-
definite, linear Hamiltonian systems, such as the simple harmonic oscillator,
DTH trajectories are given by the trapezoid and midpoint rules commonly used
to integrating differential equations.

The following theorem shows that all quadratic conservation laws are repro-
duced exactly at the vertices of DTH trajectories.

Theorem 7 (Quadratic Conservation Laws) Assume t:'mt L(x) is a quadratic
funclion given by

L(x) = —xTAx +bTx+e¢

and assume the Poisson bracket (L, H] = L YH, is identically equal to zero.
.Then L(x) is exactly conserved at the vertices of DTH trojectories.

Proof: We wﬂl show that
L(x(k"'n)—L(x("‘})

AT
We have that
L(xHY— (x5}
AT -
2L nm g et _ LT gt L Tk T ) =
AT \2 2

(k+1) ) \T (k+1) _ (k) (k+1) _ oK)
D +xB N D B =X
2 _ AT AT
(39)" A () b7 (2®) = [(=) & +o7] 50 -
L (x4)) 5/ (%),

Equation (29) implies that for DTH trajectories, T'(%) = A JH,(X'¥)}. There-
fore
Ly (RN TR ) = 2 Lo (W) TTHL (9} = 0

and thus (L{x*+0)—L(x*))) /AT = L (x*) %' ®) = .

]
1

‘Ge has shown that the midpoint scheme {(among others) is invariant under
linear symplectic coordinate transformations [2i. We show that DTH dynamics
is also invariant under linear, symplectic coordinate transformations.
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Theorem 8 (Linear Coordinate Invariance} Consider the Hamiltonian func-
tion H(z) and the trensformed Hamiltonian K(y) =H(Ty) wherez =Ty i5 a
linear symplectic coordinate transformation. The DTH egquations for X(y) are
the same as the transformed equations of H{z).

Proof: First, we note that since T is sym_?lectic. TTIT = J 7?. This implies
that TITT =J also since TTIT =J, T ITITT = 3?T7, TTITIT' =
T
—T7, (T ) 'TTITITT = -3(TT)-IT , and therefore TIT" =J.
From Theorem 1 the DTH equations for X(y} are

Sk _ i) k1) (&)
r ¥y - IJ[ . Caiies BPWL% )] k=0,1,---N—2 (d4)

AT 2 Sy &+ =
. IK(F*)
y("):}\kJ—‘é(y(TJ}‘ k=0,1,---N-1 (45)
KF*®} =0 k=0,1,---N -1 (46)

Since y = T2, and 3K(y)/8y = T 8H(z)/dz we have from (44) that

Fk+1} _zlk) ¢

GH (1) OH(ZR)
T S IITT M @) Gl

Gz0&+1) Rl )

The symplecticness of ‘Y implies that TIT' = J. Similarly, since

YOy ® gk o)

v = Ar Ar Tz
equation (45) becomes
FH(EX)
—ik) _ T
Z’( J = /\kTJT —'—{T

and again the symplecticness of T implies TIT' = J. Finally, since
KF®) = H(Ty™) = H(T T '2™) = H(zH)

from equation {46) we have '
H(ZX)) =0

a
We remark that it is in fact possible (at least formally) to show that DTH
" dynamics (and the midpoint scheme) are coordinate invariant under a much

larger class of piecewise-linear, continuous, symplectic coordinate transforma-
tions which are consistent with a special triangulation of phase space [12].
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4 Concluding Remarks

We have seen that DTH dynamics reproduces, in some form, several of the
distinctive properties of Hamiltonian dynamics. These include symplecticness,
exact copservation of the Hamiltonian, preservation of quedratic conservation
laws and coordinate invariance with respect to linesr, symplectic coordinate
transformations. A property of DTH dynamics not possessed by Hamiltonian
dynamics is the dynamic behavior of time. This property needs to be explored
further.

We have chosen in this paper to view DTH dynamics from a discrete mod-
eling perspective, focusing on properties instead of error analysis or computa-
tional eficiency. Simulation resuits for the simple pendulum and a one-degree of
freedom inverse-square-law system are given in [13]. Simulation results for Ke-
pler’s problem are given in [12]. A detailed error analysis and a computational
efficiency study have not yet been completed. ’

For small time steps, the DTH equations are not as easy to solve as the
equations of the implicit midpoint and trapezoid schemes. Computer simmla-
tions run to date have used a nested Newton iteration scheme, first to solve for
z*) and then to solve for \x. Quadratic convergence of the nested iterations
is proved in [12]and described in detail in [13]. Recently, Ander Murua {10}
has sugpgested that more efficient solution techniques are possible. These are
currently under study.
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