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Abstract

A smooth time-step selection formula for the midpoint method is
derived which minimize deviations in the Hamiltonian function along
piecewise-linear phase space trajectories of autonomous Hamiltonian
systems. The time-step formula is implemented in 2 second order pre-
dictor/corrector scheme and applied to Kepler’s problem. The formula
significantly improves energy conservation as well as the accuracy of
the configuration space trajectory. Peak errors in position and momen-
tum coordinates are not significantly reduced, but the time behavior
of the errors is markedly more regular.
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1 Introduction

Hamiltonian dynamical systems arise naturally in classical mechanies, geo-
metric optics, optimal control theory and a wide variety of other situations
in which the basic phenomena of interest can be characterized by a varia-
tional principle [4]. Considerable interest exists in developing computational
algorithms which exploit the special properties of Hamiltonian dynamics.

Conservation of energy {or more generally, conservation of the Hamilto-
nian function) is one of the basic properties of Hamiltonian dynamics. In
this paper, we show how this property is exploited in a new variable time-
step midpoint scheme for Hamiltonian systems. Time-step sizes are chosen
to minimize the deviations in the Hamiltonian function along a piecewise-
linear, continuous interpolation of the discrete trajectory determined by the
midpoint scheme. The new variable-step midpoint scheme is implemented
in a simple predictor/corrector algorithm and comparisons are made with a
fixed-step implementation of the same predictor/corrector algorithm. The
total number of function evaluations are kept the same for both variable-
step and fixed-step schemes. Simulation results show that for Kepler's prob-
lem, the variable-step scheme produces markedly better orbits than does
the fixed-step scheme. This is achieved with the small overhead of the one
vector/masrix multiplication and the one vector/vector dot product used to
determine the size of each time-step.

The ideas contained in this paper originated from the author’s work
on a discrete-time theory for Hamiltonian dynamics called DTH dynamics
[10, 11, 12). DTH dynamics determines piecewise-linear, continuous, phase
space trajectories which exactly conserve the Hamiltonian function at the
midpoints of each linear segment. In the extended phase space formulation
of Hamiltonian dynamics (where time is treated like a position coordinate)
the principle of least action does not uniquely determine how time behaves.
Using a discrete version of the principle of least action, T. D. Lee {5] showed
that for Newtonian potential systems, the behavior of time is governed by the
conservation of energy. Using a new discrete variational principle, the author
has shown that the behavior of time in DTH dynamics is governed by conser-
vation of the Hamiltonian function. Existence and uniqueness results as well
as asymptotic results characterizing the behavior of time in DTH dynamics
are given in [10]. We use a different approach here. Instead of attempting to
exactly conserve the Hamiltonian function, we instead minimize deviations



in the value of the Hamiltonian along the entire plecewise-linear, continuous
phase space trajectory. We show how this is done in the following section.

2 Time-Step Selection Formula

Consider an autonomous Hamiltonian dynamical system with Hamiltonian
function H(z) where z = (q,p)" € R2" and where q,p € R* are the posi-
tion and momentum coordinates respectively. Let J be the skew-symmetric
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where L, is the n X n identity matrix. In symplectic form, Hamilton’s equa-
tions of motion are given by

dz

where H is the gradient vector of H [2). (See {7] for an explanation of
symplectic notation in the context of linear Hamiltonian systems.) We will
describe a variable step midpoint scheme for discretizing equation (1). First,
however, it is convenient to introduce notation for representing piecewise-
linear, continuous trajectories.

Assume the points &z, k = 0,1, -+ N partition the interval [tg,tx] into
N intervals each of length ;. Assume also that Z : [tg,2n] — R is a
piecewise-linear, continuous, phase space trajectory as shown in Figure 1.
Define z*! = 4(t;) to be the vertices of Z(t). Clearly, Z(t) is completely
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Figure 1: A piecewise-linear, continuous trajectory Z(t).

determined by its vertices z(*).



Define
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Since the trajectory Z(t) is piecewise-linear, it can be expressed in terms of
the values of Z*) and z’*) in the following way.
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We now discretize Hamilton’s equation using the variable step midpoint
scheme
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The midpoint scheme (5) determines a piecewise-linear, continuous phase
space trajectory Z{t). Using (2) and (3) this midpoint scheme can be ex-
pressed more compactly as

z'®) = JH,(2®) (6)

For autonomous Hamiltonian systems, the Hamiltonian function H(z) is
conserved along the trajectory determined by Hamilton’s equations. We use
this fact to determine the values of the time-steps Az by trying to conserve
the Hamiltonjan function along each linear segment of the piecewise-linear,
continuous trajectory Z(t} determined by (6). Define

H(t) = HE() (7)

As a measure of our success in conserving H{(z} along the trajectory 2(¢) we
will use the error function

e(ho, hay- . hny) = Nf /: s (B@) - A@)” at (8)
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QOur strategy then will be to try to choose values of A; which minimize
e(hg, k1, - - . hyy—1), but first we obtain an approximation for e{hg, b1, - .. An_1).
Forty <t <try, k=0,1,--- N—1 we have the Taylor series expansions

H@) = H@) + B @)~ ) + %fl”(ﬁ)(t -4+ 0 ((t —fk)s) 9)

Using (7) and the chain rule to expand H'(fy) and using equation (6) to
substitute for Z'®) we have

B@E) = Hi(2(E) %)
= Hz(i(k))TE'(k)

= H,(z*NhTJ Hz(-z(k))
=0 (10)
Similarly, expanding g (tx) we have
H'() = (#@) He(@) @@) + H(20) 2" E)
= (f’(k))T sz(ftk}) (-Z-f(k))
= (JHZ(EU“}))T Ho2(Z%) (_] Hz(-z-(kl))
= "!’(i(k}) (11)

where

$(z) = (JH,)" Ha (JH) (12)
Using (10) and (11) to substitute for A’(Z;) and A" (%) in (9) we have

) = HG) + 59E0) ¢~ %2 +0 (-5, t<t<tn (19)

From (13) we obtain the following third order approximation for e(hg, k1,... hy_)).

e(hg,hl,. --hN—l) = / = H(t H(_k)) di

k D
o 3 (L a0
2 Lz:%/‘k (Ev,b(z )(t—tk)) dt
N-1
= Zi— (ff*)l (¢ — 1)1t
T n
- 3__2 YAz R (14)
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We now determine the values of h; which minimize (14} subject to the

constraint
N-1

E he =ty — 1 (15)
k=0

(This constraint is necessary to prevent all the values of hy from being zero.)
Using the Lagrange multiplier 2, we define the objective function

N-1
Flhosh1y .. Ry, ) = 320 E PEFY R 4+ (tN —ty — E hk) (186)
=0

Setting the partial derivatives of f(hg,h1,... hy—1, 1) to zero results iz the
equations

A o2 myia

641’b Z" )y —p=0 (17)
N=1

tn—to— D he=0 (18)
k=0

If we assume that the initial time-step hg is specified, we can use equation
(17) with £ = 0 to determine the value of . This value for g can then be
used in equation (17) for & > 0 to obtain the following time-step selection
formula

$(Z0)

e = Po | 5@y

(19)
where (z) is given by (12).

Clearly, the size of the time-steps, h;, are determined by the initial time-
step hp and the behavior of ¥(z). For the simple harmonic oscillator with
Hamlltoma.n function H(z) = H(g,p) = 3p° + 3¢°, we have 9(2z) = ¥{q,p) =
p? + ¢ = 2H(z). Since H(z) is constant along the exact trajectory, we
should expect that for small initial time-steps, 1(z) is nearly constant along
the approximate trajectory. Thus, for the simple harmonic oscillator, we
should expect the time-step formula to yield nearly urniform step sizes. A
more detailed analysis of the behavior of (z) is given in [10].

3 Simulation Results

The time-step formula derived in the previous section was implemented in a
simple predictor/corrector algorithm and applied to Kepler’s problem with
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the parameter values given in [1]. The Hamiltonian function is

1 1
H(z) = H{q1, @, p1,p2) = (P2 + P3) — ——
2 P 2
\/9'1 + gz

The initial conditions used are

l+e
l1—e

‘h=1_81 9’2=0: Pl=0: b2 =

where e = 0.6 is the eccentricity of the resulting configuration space orbit.
With these parameters, the exact orbit has a period of 2.
The predictor/corrector scheme used is outline in Figure 2. (Note the use

of the abbreviation H;H%) for H,((z*+1) +2%))/2).) Starting with the values
of k. and z®, a second order Runge-Kutta scheme is used to “predict” the
value of z4¥1), The Hessian matrix H,; is computed and used to evaluate
Prsz = Y((z*+1 +20)/2) (This Hessian matrix is also used by the midpoint
corrector.) The value of 3, +k is used to compute the new step size hzyy which

is then used to “correct” the predicted value for z*+1), The correction step
is accomplished by applying one iteration of Newton’s method to the implicit
equations of the midpoint scheme with the predicted value of z%*+1 used as
an initial puess.

N 1 :
DAL ) S ) + EthHS') Second order Runge-

Kutta predictor.

) = g thH;H%)
P = ho, | 22 ize adj
k+1 = g Bert Step size adjustment.

Midpoint corrector

k41 k (k+3) _ :
2t — 2® — h JHz T =0 (one iteration).

Figure 2: Predictor/Corrector Algorithm

For comparison, a fixed step version of the predictor/corrector algorithm
was implemented by removing the time-step adjustment portion of the al-
gorithm shown in Figure 2. For each scheme, initial time-steps were chosen
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so that the total number of function evaluations were the same, about 50
time-steps per orbit for a total of 1,000 steps for both fixed and variable step
implementations.

Figure 3 shows that the variable-step scheme significantly reduces errors
in the Hamiltonian function. Not only is the error in the Hamiltonian along
each orbit much less, but there also appears to be less drift in the Hamiltonian
over time. A question that might be asked at this point is what effect does
reducing the error in the Hamiltonian have on the discretization errors in
the posifion and momentum coordinates. Figure 4 and Figure 5 seem to
indicated that the peak errors in the position and momentum coordinates are
not significantly reduced by the variable-step scheme. However, the figures
show that the errors for the variable step scheme are more regular than those
of the fixed step scheme.

Figure 6 shows that the configuration space orbits of the variable step
scheme are significantly more accurate than those of the fixed step scheme.
The orbits of the variable step scheme have a much lower precession rate.

For even moderate eccentricities, the time-step ratios hx/hy can change
by more than an order of magnitude. For orbits with eccentricity e = 0.6,
Figure 7 shows that the largest time-step is more than 20 times as large as
the smallest time-step. For larger eccentricities, the time-step ratios hy/hq
can change by several orders of magnitude. The time-step formula given by
equation (19) fails in situations where 1(z) = 0. Examples of such situations
are given in [12]. Strategies need to be developed for limiting the size of
time-steps when the value of 1(z) is near zero.
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Figure 3: A compamson of errors in the Hamiltonian function.

error qi

3

)

1

-1 10 1

2

-3

(a) fixed time-step (b) variable time-step

Figure 4: A comparison of the errors in g;.

error pi error p1

‘S:LMP N %L L
i ; -W S

(2) fixed time-step (b) variable time-step

Figure 5: A comparison of the errors in p;.



(a) fixed time-step (b) variable time-step

Figure 6: A 20 orbit comparison with the exact orbit. Only the vertices of
the trajectories of each scheme are shown.
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Figure 7: Time-step ratios evaluated along the exact trajectory.
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4 Conclusions

While we have not shown rigorously that the values of hy determined by the
time-step selection formula (19) actually minimize the error in the Hamilto-
nian along piecewise-linear trajectories, computer experiments for the Kepler
problem show that this formula works well in practise. The observed improve-
ment in the regularity of the resulting position and momentum coordinates
may be desirable in applications of statistical mechanics where accurate time
dependent trajectories are not of primary importance.

By using an extended phase space formulation, it should be possible to
apply the variable-step midpoint scheme described in this paper to nonau-
tonomous Hamiltonian systems. For nonautonomous systems, however, the
energy is no longer conserved, but the extended phase Hamiltonian continues
to be conserved.

Other methods exist for Newtonian potential systems which exploit con-
servation of energy. Velocities can be scaled to conserve energy [8]. Likewise,
it is possible to scale forces to conserve energy [9]. Further work needs to
be done comparing the merits of the variable-step method described here
to such methods. Further work is also need to determine how the method
affects other properties of Hamiltonian systems such as symplecticity [6, 13]
and time-symmetry [3].
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