TIME-DISCRETIZATION OF
HAMILTONIAN DYNAMICAL
SYSTEMS

Yosi Shibberu
Mathematics Department
Rose-Hulman Institute of Technology
~ Terre Haute, IN 47803
Email: shibberu@nextwork.rose-hulman.edu

February 12, 1994

Abstract

Difference equations for Hamiltonian systems are derived from a
discrete variational principle. The difference equations completely de-
termine piecewise-linear, continuous trajectories which exactly con-
serve the Hamiltonian function at the midpoints of each linear seg-
ment. A generating function exists for transformations between the
vertices of the trajectories. Existence and uniqueness results are present
as well as simulation results for a simple pendulum and an inverse
square law system.

1 Introduction

Hamiltonian systems are used in a wide variety of applications ranging in
scope from quantum mechanics to optimal control theory. Computational
methods which preserve their special structure are, therefore, of considerable
interest.

Newtonian potential systems, a subclass of Hamiltonian systems, can be
simulated by using the discrete mechanics equations developed by Donald
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Greenspan [Greenspan 1973, 1974]. These equations are equivariant with
respect to rotation, translation and uniform motion. For the Kepler problem,
for example, the equations exactly conserve energy and angular momentum
in Cartesian coordinates. Robert Labudde [Labudde 1980] has extended the
discrete mechanics of Greenspan to include a wide variety of Hamiltonian
systems.

More recently, using a Lagrangian formulation, T. D. Lee developed a
discrete mechanics in which trajectories in the configuration space of a system
are assumed to be piecewise-linear and continuous [Lee 1987]. The average
value of the energy over each linear segment of the trajectory is conserved at
each time step. A distinctive feature of this discrete mechanics is that time
plays the role of a dynamic variable.

Symplectic integration schemes for Hamiltonian systems have received
increased interest in recent years. Yuhua Wu has shown that such schemes
admit a natural, discrete variational principle [Wu 1990]. In this way, sym-
plectic schemes may be viewed as a type of discrete mechanics.

Discrete mechanics schemes are distinguished from conventional numeri-
cal schemes in that they are based on fundamental principles as opposed to
approximations of differential equations derived from continuum mechanics.
In fact, T. D. Lee suggests that discrete mechanics may be even more fun-
damental than continuum mechanics {Lee 1987]. The finiteness of physical
reality and the dilemmas that the concept of infinity can introduce in the
continuum theory have been pointed out by Greenspan [Greenspan 1973].
Such dilemmas do not occur in the discrete theory.

In this article, we describe a discrete-time theory for Hamiltonian dynam-
ical systems which we call DTH dynamics [Shibberu 1992]. (“DTH” is an
abbreviation of “Discrete-Time Hamiltonian.”) DTH dynamics is based on a
variational principle which completely determines piecewise-linear, continu-
ous trajectories in the extended phase space of a Hamiltonian system. In the
spirit of Hamiltonian dynamics, DTH dynamics is completely symmetrical in
the way position and momentum are treated. Like the discrete mechanics of
Greenspan, DTH dynamics exactly conserves energy and conserved quadratic
functions such as angular momentum. As in the discrete mechanics of T. D.
Lee, time is treated as a dependent variable. For the simple harmonic oscil-
lator, the DTH equations of motion reduce to the conventional trapezoidal
and midpoint schemes commonly used to integrate differential equations.

We focus in this article on the basic ideas of DTH dynamics for the case of
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autonomous systems with one degree of freedom. (Generalizations to nonau-
tonomous systems with n-degrees of freedom are given in [Shibberu 1992].)
We begin by reviewing the variational principles of mechanical systems in
Section 2. In Section 3, we introduce notation for describing piecewise-linear,
continuous functions. In Section 4, we motivate the “DTH principle of sta-
tionary action”—the variational principle on which DTH dynamics is based.
Basic properties of DTH dynamics are described in Section 5 and simula-
tion results for two Newtonian potential systems are presented in Section 6.
Finally, in Section 7 we present, without proof, results for nonautonomous
systems with n-degrees of freedom.

2 Variational Principles of Mechanics

Hamilton’s principle is probably the most widely known variational principle
of mechanics. This principle states that the integral 7 given by (1} is station-
ary for the trajectory ¢(t) of a dynamical system with Lagrangian function
L{q,q) [Goldstein 1980].

= f q(t), 4(2)) dt (1)

The principle of least action is another variational principle of mechan-
ics. The following motivation for the principle of least action is based on
[Lanczos 1970). Consider now the Legendre transformation ¢ — p and
L{q,q) — H(q,p) where p and H(q,p) are given by

_ 9L(¢,4)
= e (2)

H(q,p) = pi(a,p) — L{q,4(q, p)) (3)

(For the problems to be considered, ¢{(q,p) in (3) can be obtained by solving
for ¢ in (2).) Under Legendre’s transformation, Z can be expressed as

7= [" (vi— Higp) de @

Consider a reparametrization of time given by ¢ = {(7). With this reparametriza-
tion (4) becomes
dt
7= f (——Hq,)d)dr (5)
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Define p = —H(q,p) and substitute p in (3).

= /( -I—pd)d (6)

The integral (6) is called the action integral of a Hamiltonian dynamical sys-
tem. The structure of (6) suggests that just as p is the momentum coordinate
corresponding to the position coordinate g, g is the momentum coordinate
corresponding to the time coordinate t. (It is important to note that the
variable ¢ in (6) is a dependent variable, the independent variable being 7.)

Definition 1 (Action Integral) Assume p(7),q(7),p(7) and t(7) are dif-
ferentiable functions of T on the interval [1y,7n]. The action integral of a
Hamiltonian dynamical system is defined to be

Atp(rha(r) oot = [ (o0 B2 + o) 42 o @

The trajectory of a Hamiltonian dynamical system can be obtained from the
following principle.

Definition 2 (Principle of Least Action) The trajectory of a Hamilto-
nian dynamical system with Hamiltonian function H(q,p) is given by func-
tions p(7), q(7), p(1) and t(r) which cause the action integral to be stationary
under the constraini

p+H(q,p)=0 (8)

The endpoints of g(t) and t(t) are assumed to be fized.

The constraint (8) in Definition 2 is necessary because p is defined to be
equal to —H (g, p} in (6} and thus p is not independent from p and gq.

The equations of motion for a Hamiltonian system can be obtained from
the principle of least action as is shown in the following theorem. A discrete
version of the principle of least action will be used in Theorem 3 to derive
discrete-time equations.

Theorem 1 The trajectory of a Hamiltonian dynamical system with Hamil-
tonian function H(q,p) and initial conditions ¢(1y) = qo, p(70) = po, t{n) =



0 and p(19) = —H(qo,po) s a solution of the following system of differential
equations.

G )
j—f = —/\(T)—aHé‘;’P) (10)
L= ) (11)
dp

% = (12)

The function A\(7) s an arbitrary function which determines the parametriza-
tion of the trajectory.

Proof: The principle of least action states that the trajectory of a Hamilto-
nian system causes the action integral (7) to be stationary when subject to
the constraint (8). Define

9(e,pp) = p+H(qp) (13)
Fp(r), q(7), p(7),8(7), A(7)) = Alp(7),4(7), p(7),4(7)) —
[ Amtatr) w0, p()dr - (14)
where A(7) is a differentiable function of 7. From (7), (13) and (14)

F(p(7),4(7), 0(7), 8(7), A(7)) =

|7 Latr) (), p(0), £ (), (), A()) dr (15)
where
L{g,d,p,t',p,\) =pq +pt' — Mp + H(q.p)) (16)

and where the notation ¢’ and ¢' has been used for dg(7)/d7 and dt(7)/dT.
The action integral subject to g{g, p, p) = 0 is stationary when the functional
f given by (15) is stationary. But the functional f is stationary when the
following Euler-Lagrange equations are satisfied.

d (0L oL
ir (o7) 5 = ° )
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%(%)—% =0 (18)
%(%)—% =0 (19)
£()-% -

By substituting the Lagrangian (16) in equations (17)-{20) we obtain equa-
tions {9)~(12). Substituting (16) in {21) results in the identity

p(7) + H{q(7),p(7))

Claim: Equations (9)-(12) imply equation (22) independently of equation
(21).
Proof of the claim:

—

0 (22)

dH(q(r),p(r)) _ 0H dq _0H dp

dr dq dr + Op dt (23)
Substituting (9) and (10) in (23) we have that
dH OHOH OHOH\ _
=0 (G ) = e

Therefore, (9) and (10) imply that H(g(7),p(7)) is constant. Equation (12)
implies p{1) is constant also. We have then that

w(7) + H(q(7), p(7)) = p(m0) + H(q(70),p(70)) =0 (25)

as claimed, since from the initial conditions, q(7) = go, p(m) = po and
p(70) = —H(qo, Po)-

a

The claim in the proof of Theorem 1 implies that for the Lagrangian (16)
equation (21) is not independent from equation (17)-(20). The situation is
very different for the discrete-time theory to be discussed shortly.
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3 Piecewise-Linear Continuous Functions

Assume the points 74,k = 0,1,--- N, partition the interval 7y, 7n] into N
equal intervals of length AT,
T = To+kAT k=0,1,---N (26)

™ —To
AT _

N

Assume Z(7) is a piecewise-linear, continuous function of 7 as shown in Fig-
ure 1. Define
Ik=i‘(7‘k) k=0,1,---1\r (28)

These z;'s will be called vertices of (7). Clearly, £(7) is completely deter-
mined by its vertices, Define

T+l + Tk

T = '.'fk(:i:k+1,$;;.)= 2 E=0,1,---N—-1 (29)
Th o= Tilam,o) = S k=01 N-1  (30)

(Note that T4 in (30) is not the derivative of T and that both Z; and T} are
defined at the midpoints of the partition of [, 7n].) Since Z(7) is piecewise-
linear, it can be expressed in terms of the values of T and T}, in the following

way.
T, x4 -7 = e —_—
i)y = T =T) BT <men k=01, N-1 (31)
N T=TN
where - Tk+1 + Tk
Tk=—2

(Teer Xt

\%

(T, x)

Figure 1: A piecewise-linear, continuous function.
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Thus, #(7) is completely determined by the values of T4 and T} k = 0,1,--- N—
1. Since #({7) is continuous, T; and T} must satisfy the following continuity
constraint.

Lemma 1 (Continuity Constraint) A piecewise-linear function is con-
tinuous if and only if
Tett =Tk _ Tpp1 + Tk
AT T2
The proof of Lemma 1 is given in [Shibbern 1992]. The following Lemma
will be used in the proof of Theorem 3.

(32)

Lemma 2 From (29) and (30) it follows that
o _1 omh_ 1
al‘}; - 2 31‘1; - AT
Iz, 1 aT5 1

6:c;,+1 B § 3.T:k+1 = E

fork=0,1,---N -1,

4 DTH Principle of Stationary Action

We now motivate the discrete variational principle on which DTH dynamics
is based. (Recall “DTH” is an abbreviation for discrete-time Hamiltonian.)
First we define the discrete action of a Hamiltonian system as follows.

Definition 3 (Discrete Action) For piecewise-linear, continuous functions,
1), (), p(r) and i(7) defined on a uniform partition of [y, x|, the dis-
crete action Ay of a Hamiltonian system is defined to be

N-1
An(Po-- Py, Go - qns o Py to- - tv) = D (B +Bith) AT
i=0
The above definition is motivated by the following theorem which states
that for piecewise-linear, continuous functions, the action integral given by
Definition 1 is exactly equal to the discrete action in Definition 3.



Theorem 2 For piecewise-linear, continuous functions, the action integral
and the discrete action are equal.

A7), §(7), (1), £(7)) = An(po--PnGo- - gn, 0" - PNy to - EN)

Proof: From Definition 1
dt(’r))

Since ¢{(7) and t(7) are piecewise-linear, it follows from (31) that d§(r)/dr = '
and dt(r)/dr =T for ; < 7 < 7iyq, i = 0,1,--- N — 1. Therefore

()

AG(r) a6, o0, ) = [

A ), 6, 800) = 3 (70 [ 56 ar + 74 [ o) ar)

i=0 i i
Since _
[ brydr =piar
and _
[ eryar =piar
we have
-~ N_l —_—
AB(T),4(7), (1), 8(1)) = - BFi+wli) AT
i=0

a

We are now in a position to present a discrete version of the principle of
least action.

Definition 4 (Discrete Principle of Least Action) The discrete-time tra-
jectory of a Hamiltonian system with Hamiltonian function H(q,p) is given
by piecewise-linear, continuous functions p(7), §(7), (1) and i(1) which cause
the discrete action to be stationary under the constraint

o+ H(g,5,)=0 k=0,1,---N—-1 (33)

The endpoints qu, qn, to and ty are assumed to be fized.
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Observe that in the discrete version of the principle of least action, con-
straint (8) is enforced only at the midpoints of a piecewise-linear, continuous

trajectory.

We now use the discrete principle of least action to derive difference equa-

tions for Hamitonian systems.

Theorem 3 The discrete-time trajectory of a Hamiltonian system with Hamil-
tonian function H(q,p) and initial conditions §(to) = Gy, p(to) = By, t{o) =
ty, ©{te) = —H (G, Py) s @ solution of the following system of equations.

Grpt =G 1 OH (Grr11 Prgr) OH (7, By
—_— = Akt1 + Ak
AT 2 ) Ok +1 Opy,
Peyr =P _ 1 OH Gy 1> Pis) OH(qy, Pi)
— e = A+l + Ax
AT 2 011 g,
Terr — 1L 1
S = gt M
Pryl — P _
AT =0

where k =0,1,---N — 2.

/\k aH(ak:ﬁk)
apy,

I~
(==
| |

Ak
Pr + H(Gy, Pr)

where k =0,1,---N — 1.

|

(34)
(35)

(36)

(37)

Proof: By the discrete principle of least action, a discrete-time trajectory
of a Hamiltonian system is given by piecewise-linear, continuous functions
which cause the discrete action Ay to be stationary under the constraint

o+ H@,P) =0 k=0,1,---N—1

where the endpoints o, gn, o and ty are fixed. Let

g(-q-k‘lﬁkiﬁk) = pk + H(qkaﬁk)
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and let

f(pl)"'pNaQD'"QN,SJO"'EONytD“'tN:/\D“‘/\N-—l) =
Ay — T X 9(3, 70 8)- (42)

where A; in {42) are Lagrange multipliers. We have then that Ay, subject
to {74, Px, Bx) = 0 for k = 0,1,--- N — 1, is stationary when the partial
derivatives of f with the possible exception of 8f/dqq, 8f/dqy, 8f/ty and
Jf/0tn are equal to zero. The exception is necessary because the endpoints
Go, 9N, to and iy are assumed to be fixed and therefore, parital derivatives
with respect to these variables may not be zero. From (41), (42) and the
definition of Ay

N-1
f= Z;) Fai+wti— N @+ H@,p))) AT (43)

Equating to zero the partial derivatives 8f/0qry1, @f/Oprs1, Of/Otis and
Of/Opry1 for k =0,1,-.- N—2implies equations (34) —(37) as follows. From
(43) for k =0,1,---N -2

N-1
ajil—l - ap(zﬂ e [ﬁ‘ﬂ +Bd =X (ﬁ' +F.-)] AT (44)

where we have used the abbreviation H; for H(7;,5;). The terms on the right
hand side of (44) depend on py;; only for i = k and i = k + 1. Therefore

af a ' = —
= PG, — A Hiy +D o' - H. AT
6pk+l 3Pk+1 [pqu kLR pk+1Qk+1 k+1 k+l]

— { apk ) /\ aHk aﬁk
- Ti — Ak

Ipes1 P 0Pkt

+ al_)k+laf — Aeys BHk aﬁk+l:|
3pk+1 k1 + aﬁk+1 3pk+1

From Lemma 2, 07, /0pry1 = % and 0P, ,/0pkt+1 = % Therefore

of [ai.ﬂ +7, 1 ( 0H i1 aﬁ,,)]
OPr+1 2 2 \ 7! P11 * Py (45)




From the continuity constraint on §{7) (Lemma 1)

Tt T Tk _ Tesr — Tk

2 n AT
Therefore
of [T T ( OHp1 fﬁf_k)]
= —=1{X + X AT
3Pk+1 [ AT 2 e aﬁk“ g aﬁk

from which it follows that 8f/3p,+1 = 0 implies equation (34). Similarly

af [ 7 IH; ag; 97}, 3Hk+1 '
—— =17 — A Prp1ortt — A L Ar
Ik Pk gk © Gy Oqenr Pt Ot g Iqjer1 O

From Lemma 2 95} /8qx+1 = 1/A7 and 87} ,/3qk+1 = —1/A7. Therefore

of Pop1 — P 1 ( IH1 3Fk)]
= |——" b + Ajp— AT
an+1 [ AT k1 3_A+l k 3qk

Thus, 3f/d¢+1 = 0 implies equation (35). By equating 8f/0pey; and
0f/0tky1 to zero, we can obtain equation (36) and (37) in a similar fash-
ion. For k=0,1,.--N —1

N—1
g; = a‘?\ [ﬁ.q’ +58— N (7 + H)| A7 (46)
= (g)k + _H_k) AT (47)

Equating 8f /83X« to zero implies equation (40}. Now since pg, pn, o and py
are free to vary, the function f is not stationary unless the partial derivative
af/0po, Of|Opn, Of/Bpo and 3f/OpN are also equal to zero. Equating
these partial derivatives to zero implies equations (38)—(39) as follows. From
(43) we have

af g N 1 .
%6 %0 2 [pq +pti— N ( H,-)] AT

The terms on the right side of (4} depend on py only for ¢ = 0. Therefore

of @

- = DT — AoHg| A 48
o . Poqo 0 0] T ( )
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IPo_, 0H, dp,
— Ao A 49
[319 70 om, 3190] ! 49)
_ aH[) 3_0
_ [ -2 ] o Ar (50)
From Lemma 2 8p,/0po = § # 0. Therefore, 8f/8py = 0 implies
oH,
o= A— o1
QO aﬁﬂ ( )
Similarly, 8f/3pp = 0 implies
7= Ag (52)

Using the continuity constraints on ¢(r) and f(7) we can express equations
(34) and (36) as follows.

Tht1 T T 1 A OH o q1 A 0H,

= —|A : 23

2 2| g, " o 53)
thpg + 14 1

—"tl-z—’* = 5[,\,c+1+,\,l.] (54)

We now show by induction that equations (51) and (52} hold true for k =
1,2,--- N — 1. Assume for some k, 0 < kK < N — 2 that

OH,
b= Ap—m ad
i ¥ (55)
P = M (56)

N B~

Substituting for §} and ¥} in (53) and (54) and solving for g}, and £}, we
have

;r+l = Aktt (57)
Rl = Aert (58)

From {51) and (52) we see that (55) and (56) hold true for k = 0. Therefore,
by induction, (55) and (56) must hold true for all k =0,1,--- N — 1.

w2

|
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Finally, we evaluate 0f/0py and 8f/0px.

J ad —
g = Gy T~ o )
_ aHN-l:l OPn_1
= ot — AN— AT 60
[qN : N laﬁN—1 Ipn (60)

Thus, 8f/0py = 0 implies

Thol = An- (61)
NN D

Similarly, 8f/0px = 0 implies
thvo1 = Av-i (62)

Observe that both (61) and (62) are in agreement with equations (38) and
(39) for k = N — 1.

a

The discrete principle of least action described above does not completely
determine piecewise-linear, continuous trajectories. As we can see from the
equations of Theorem 3, the discrete principle of least action only determines
the values of Py, Gi, tk, P, and Az and the values of g and #},. The values
of p; and P’ remain indeterminate. Clearly, equations (61) and (62) im-
ply (38) and (39) independently of equations (51) and (52). Thus, allowing
free variations in the momentum coordinates at k = 0 yields the same equa-
tions as the equations obtained by allowing free variations in the momentum
coordinates at k = N. We now present a new variational principle which
completely determines piecewise-linear, continuous trajectories for both po-
sition and momentum coordinates. The new principle is based on a new
definition for the discrete action and it permits variations in the momentum
coordinates at £k = 0 and variations in the position coordinates at k = N.

Definition 5 (Modified Discrete Action) For piecewise-linear, continu-
ous functions, p(1), §(r), 9(r) and t(r) defined on a uniform partition of
[10, Tw], the modified discrete action Ax of a Hamiltonian system is defined
to be

An{po---pvito - gn, 0 P, tostn) =
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1 pa g | 1,- . 1

5 (q0Po+topo) + 3 [5(6.-;72 — i) + 5P - ti@.-)] A7+ (gvpy +inpn)
k=1

Definition 6 (DTH Principle of Stationary Action) The DTH trajec-

tory of a Hamiltonian system with Hamiltonian function H{q,p) is given by

piecewise-linear, continuous functions p(7), ¢(7), p(7) and t{r) which cause

the modified discrete action to be stalionary under the constraint

§k+H(qk’ﬁk):0 k:0,1,“‘N"'1 (63)
The endpoints qo, to and py, oy are assumed to be fized.

In the following theorem, the DTH principle of stationary action is used to
derive the difference equations of DTH dynamics.

Theorem 4 (DTH Equations of Dynamics) The DTH trajectory of a
Hamiltonian system with Hamiltonian function H{q, p) and initial conditions

g(to) = o, p(fo) = Po, t(t0) = 0, (o) = —H(Go,Py) is a solution of the
following system of equations.

Qo1 — T 1 OH (G 11, Pr41) OH (Gy, Tr)
= = = —| M As 4
A7 2 [ k+1 st + Ap o5, {64)
Pen =P _ 1 OH (Qhr1: Prs1) OH (Gy, Pr)
A7 = -3 [Am 9, + Ak 27, (65)
Tpey — 1L 1
L‘;T—k = 5[1\k+1+/\k] {66)
Prel — P
Feel "W g
AT (67)
where k =0,1,---N —2
_ 0H(q,.,p,
T = M E)I_:kp&) (68)
—7 aH(?k?ﬁk)
Py = ~M—(—" 69
k aqk ( )
o= (70)
Py = 0 (71)
0 = P+ H(G, Py (72)

where k =0,1,---N —1,

15



Proof: The DTH principle of stationary action states that the discrete-time
trajectory of a Hamiltonian system is given by piecewise-linear, continuous
functions which cause the modified discrete action Ay to be stationary under
the constraint

B+ HG@,m)=0 k=0,1,---N—1

where the endpoints gg, 2, py and px are fixed. Asin the proof of Theorem 3
let,
9T Prs Bx) = Bk + H(Tr, i) (73)

and now let

flpo---Dn,Go g o s to tN, Ao Anoy) =
-AN + E:i_ﬂl ’\ig(-q-isp-i:_g_)i) (74)

where in (74) we have used the modified discrete action Ax. We have
then that Ay, subject to g(q,,Pr,Px) = 0 for k = 0,1,--- N — 1, is sta-
tionary when the partial derivatives of f with the possible exception of
af[dq0, 3f/3ty, 3f/3pn and 3f[dpn are equal to zero. From (73}, (74)
and the definition of Ay

1
[ = E(Qopo + togo) +

N—-1 1 1 _ _ _

2 [5(@?: ~7P) + 5P —1ip) + X (B + H.-)] AT +
i=1

1

§(Q‘NPN +tnpn) (75)
where again we have used the abbreviation H; for H(7;,p;). Equating to
zero the partial derivatives 9f/3pey1, Of/Oqui1, Of [Opr+1 and O f/dtiyy
for k =0,1,--- N — 2 implies equations (64)~(67) as follows. From (75) for
k=0,1,---N =2

o0 [1(6 Pk = TiPi)
OPk+1 Opryy L2VROK T TATE
1 — —_—
+ §(§k+1ﬂ+1 ~ 1 Pryr) + (uHi + )\k+1Hk+1)] AT

1_,1, 1,1 1_ 1
5% = 574(5) + FTers(— 1)
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1 1 JH, 1 d0H,
- (@) + M 3) + e ) ar
(2’381

_ |21 (?kﬂ—?k) 1T+
2 AT 2 2
1 aFjH.[ 6—Hk
+ 2 (/\k+1 3ﬁk+l + /\k aﬁk AT
I A1 Ek) 1 OHyy 0H,
- [ ( AT T2 (AHI P N om, Py a7

where we have used Lemmas 1 and 2. Thus, 3f/8pr4 = 0 implies equation
(64). Equations {65)—(67) are derived in a similar fashion.

g_lf;l - 6?? [ qOPg‘*‘1(@0176—561_90)‘57'*"\0}?0‘&7]
= 59’0+ 5 [@o(——)—q (;)] AT+’\°?9{{O( AT
_ %_%A—an +,\0%f_fo°] Ar

where we have used the fact that q; = (G, + @ %1) Therefore, 3f /8py = 0
implies

0H,
o= ro— 76
fo="0 9Py (76)
Assume for some k =0,1,--- N — 2 that
oH,
7, 77
T = Mo 315& (77)
Then equation (64) and Lemma 1 imply that
0H 41
Thet = M - 78
d k1 k+1 31_3k+1 ( )



Since equation (77) holds true for & = 0, by induction we have established
(68). Similarly,

%N— = Bq% [%QNPN + %(EN—ITD?V—I — G PN 1) AT + ’\N—lﬁN—lAT]
= gon 5 [P = (GPen] ar 4 T G ar
= % :pw —(Pno1 - ﬁfﬂ’—l%":) + '\N—laag:__ll AT]
R L

Thus, 8f/dqyx = 0 implies

(79)

Using the continuity constraint on #(7) and equations (65) and (79) we
can, by induction, establish equation (69) in the same way equation (68)
was established. Equations (70)—(71) are derived in a similar manner. Fi-
nally, equation (72) follows directly from the equation df/9A. = 0, k =
0,1,---N —1.

5 Properties of DTH Dynamics

DTH dynamics has several interesting properties which we now describe. The
function f given by equation (75) can be used to define a generating function
for transformations between the vertices of a DTH trajectory.

Theorem 5 (Generating Function for DTH Trajectories) Assume

S(qo,to Py on) = f a0 (80)
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where f on the right hand side of (80) is evaluated along DTH trajectories
satisfying the boundary conditions §(m) = qo, t(m) = to, P(7n) = py and
oltn) = pn. Then

as %_ as _ a5 _y (81)
3qo = Do, 3t £0, —8pN =qn, 77— =1In
Proof:

as af .
040 Bq wpip
1

1 —
= Pt 5. [E(Goﬁf) — ToPo) + f\oHO] AT
1 1,1, 1, 1 0Hy 1
= ———7 A —_— =
30+ (3P = 32 + )] ar
_ 1 1 _ —7 AT BHO
= ZPt3 [Po-f-Po 5 +A07?—0A ] (82)
Since, by assumption, f is evaluated along a DTH trajectory, from equation
(69) of Theorem 4

Aoo— =P (83)

Substituting (83) in (82) we have

s _ 1 +l[~ +"’£—_’AT:|
o 200 T g [PeTPoym T ho
1 1 , AT
= §Po+-2—[p0 Po 2]
1 1
= 2P0+2p0
= Do
Similarly,
as o 1., o B 1
E)P_N = m[ﬁ(‘ﬂ\"IPN—L_QZN’—IPN—1)+/\N_1HN_1] AT+§QN
_ iz 1 1_, 1 OHpn_, 1
= [QqN—l(AT)_QqN—l(E)"'/\N la_N 1( ) AT+2
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1 _, AT OHn_1 1
= 3 {QN 1 Qk—17+ANﬁ1ﬁAT +§QN
1 AT 1
= '_[EN 1 —TN-1—5 5 +qn- 1AT]+2§'N
1
= Q[QN TN 2]+ SN
_L1
= 2f1N 2¢IN
anN
We also have
as _ of
B = Big linis
1 a 01l _, _, _
= §@o+go[§(topb tBPo)] AT
1 11, 1,
R
1 1 _ AT
= '2"500"- [@oﬂ% 2]
_L
= 2890 2@1
Equation (71) implies p; = gp. Thus, we have
05 _
dty
Finally,
as af

apN ap |‘j|ﬁ)i)i5
o 1
= [ (Fnva1P o = En By} + AN—1Pn ]A”""—fw
3 PN 2
_ 1 1_ 1
= |3tn- 1 — 5t N—l( )+ Anai(s )] AT+ Sty
_ - A 1
I:tN—l — ff;\ 27- + An- 1AT:| + sz
_ _ A - 1
[tN—l - t?\f—l% +ti\f—1"—\7'] + '2“3N
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1 -, AT 1
= a[tN-l“N—lT]*itN

1 1
= =t -t

2N+2N
= ity

a

Another property that DTH trajectories possess is that of exactly con-
serving the Hamiltonian function at the midpoints of each linear segment.
This property is evident once the DTH equations are written in a more com-
pact form.

Corollary 1 (Reduction of the DTH Equations) The DTH trajectory
of an autonomous Hamiltonian system must satisfy the following system of
equations for k =0,1,---N — 1.

- _ AT OFH.] 3?;;
—_ [ — i Ao = 84
Tet1 — T~ > [/\Hl e + Ap aﬁk] 0 (84)
— — AT aFH_k+1 Bﬁk
- — A A =0 85
Diy1 — Pr + 2 [ k+1 e, + Ax a3, (85)
Hey—Hy = 0 (86)

Proof: Equations (84)—(85) follow directly from (64)—(65). From (72) we
have p, = —Hj. Substituting for p; and P, in (67) and multiplying by
AT we obtain (86).

O

Observe that once gy, Pry1 and Axyq are obtained from equations (84)—-(86)
fi+1 can be obtained explicitly from equation (66) and G}, B} and £} can be
obtained explicitly from equations (68)—(70).

From equation (86) it is clear that DTH trajectories exactly conserve the
Hamiltonian function at the midpoints of each linear segment. (For time
dependent Hamiltonians, the right hand side of equation (67) is not zero,
and therefore, the reduction implied by Corollary 1 no longer holds true.)

We turn now to the question of the existence and uniqueness of DTH
trajectories. It follows from Corollary 1 and the observations which follow it
that the values Ag11 = =Mk, Gy = T, and Py =D, K =0,1,--- N —1
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determine a DTH trajectory. However, if Ax41 = —Ag, equation (66) implies
that 7y, = 7. Clearly we are interested in trajectories for which the time
i, increases with k. Do such trajectories exist? For autonomous, positive-
definite, linear Hamiltonian systems, such as the simple harmonic oscillator,
it is possible to show that for sufficiently small A7, there exists only one other
DTH trajectory and this trajectory must satisfy the condition Aryy = Ay for
k=0,1,--- N — 1 [Shibberu 1992]. (Note that if this condition is satisfied,
the DTH equations {64)—(65) reduce to the trapezoidal scheme and equations
(68)-(69) reduce to the midpoint scheme, two schemes commonly used to
integrate differential equations.) We will simplify the discussion for the case
of nonlinear Hamiltonian systems by focusing on only one step of equations
(84)—(86). We will use the notation Ay, g and py to represent Ay, g, and
Pr and A, g and p to represent A4y, Gy and P, We will also use Hg
and H? to represent 8H, /3, and 9H,/dp, and H, and H, to represent
OH41/0y1y and OHeq1/0Piyy.

Using the above notation, one step of equations (84)—{86) can be repre-
sented by the equation

F(g,p,2) =0 (87)
where
q—qo—% /\Hp-’f—/\gHS
Flg,p,X) = | p—po+ 57 (AHg + XoH] (88)
H(q’p) - H(qOI PO)
Let DF represent the Jacobian matrix of F. Then
1 _AAA_2_T)qu _(A%;)pr _g_\‘%)Hp
DF = (_21: Hyq 1+ 2T)qu (TT)Hq (89)
H, H, 0
and AR
det(DF) = — ( 4T) ¥(q,p) (90)
where
U(q,p) = Hoo(H,)? — 2H ,H Hy, + Hyp(H,)? (91)

From (90) we see that equation (87) is singular when A7 = 0. Assum-
ing Ao, go and py are given, it is possible to show that for sufficiently small
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nonzero values of A7, a sufficient condition for the existence and local unique-
ness of solutions to (87) is the condition ¥ (g, pp) # 0. Corollary 1 and the
observation which follow it imply that ¥ (g, po) # 0 is also a sufficient condi-
tion for the existence and local uniqueness of DTH trajectories. The details
of the proof are given in [Shibberu 1992].

For Hamiltonian systems with positive-definite Hessian matrices, ¥{qo, po)
if and only if (gq, po) is a stationary point of the Hamiltonian vector field of
H(q,p). The condition ¥(qq, po) = 0 on an open set is much more restrictive.
Systems with linear Hamiltonian functions, for example, have ¥(g¢,p) = 0.
For one degree of freedom systems, ¥(q, p) = 0 if one of the coordinates is
cyclic.

6 Newtonian Potential Systems

In this section we will compare DTH dynamics to four discretization schemes
for Newtonian potential systems. Each scheme determines a piecewise-linear,
continuous trajectory, ¢(t). We will adhere to the notation set forth in the
previous sections.

Consider a Newtonian potential system consisting of a particle with mass
m acted upon by a one-dimensional field having the potential function V(q)
where ¢ is the position of the particle. The energy of this system is

B(g,v) = gme* + V() (92

where v is the velocity of the particle. The equations of motion for the system
are

dg .
dv _ 13V(g)
d¢ ~  m Jq (94)

Two schemes commonly used to discretize differential equations are the
midpoint and trapezoidal schemes. The midpoint scheme for equations (93)-
(94) is given by the equations

Ol — T Ukt + % (95)

At 2
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Tyl — Uk 1 ov ((§k+1 + qk)/2)

= —= 96
At m oq (96)
where
= _ Tk + qr
UiN o
— _ Gr+1 — Gk =7
k= TR 9k
The trapezoidal scheme is given by
D1 =T _ Teni + % 97
At 2 (97)
T O _ 1 OV (Gx41)/0g + 0V (gy)/Oq (98)
At m 2

From Lemma 1 it follows that equations {95) and (97) insure the continuity
of the trajectories, {t) determined by these two schemes.

A discretization scheme due to Donald Greenspan [Greenspan 1973] is
given by the equations

Tl — @ _ Tk T 99
At 2 ( )
Ukt1 — Ur _ __]-_V(qk+l) — V(qk) (100)

This scheme exactly conserves the energy given by (92) at the midpoint values
gx and Ty of the trajectory §(¢). That this is the case can be seen from the
following.

- — . m,_ _ _ _
E(Qk+1: Uk+1) - E(kavk) = 5(’0;2;4,1 - 'Ur%) + V(Qk+l) - V(Qk) =

m (ﬁ-u +m) (m+1 - 1‘:;;) Al + (V(EEH) _Y(Ek)) (EHL —ﬁk) Al
2 At kg1 — G At
(101)

Substituting (99)-(100) in (101) we have
E(@et1:Tkt1) — E(@r, V) = 0

Again, equation (99) insures the continuity of §(t).
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A fourth discretization scheme due to T.D. Lee [Lee 1987] can be derived
in the following manner. Let Ap given by

Ap = gﬂ [;mvz - V(i)] (tigr — 1) (102)

be the “discrete action” of a Newtonian potential system where

7, = qit+1 — G (103)
tipr — &
and where the “discrete potential” V(i) is given by
—. 1 Fit1
V(i) = ——— [ V(g (104)
Gi+1 — & Jai

The values of g and 4, k= 1,2,-.- N—1, are determined by the requirement
that Ap be stationary, namely

JAp

= 0 105
Ot (105)
dAp

= 0 106
M1 (106)

for k=0,1,--- N — 2. From {102) and (103) we have

atIk+1 B aQk+1 i=0

JAp g Nz [1

52 = V)| (tinr — 1) =

6;11 [(;mvk V(k)) (trep1 —te) + (;mvm Vik+ 1)) (thyo2 — tk+,)] =

(mﬁ Jv, 6V(k)
¢ aqk+1 aqk+1

Vi tet1 — te) +
[m 2 (tk+1 ) 6‘]k+ :| ( k+1 k)

Mgy | — teye — tiy1) =
[ ( treta — tk+1) 6‘1k+1 ] (

o AV{k+1
)(tk+1 "tk)+(m Ty ot ( )) (teg2 —trq1) =

Okt k41




OV (k +1) oV (k)
T (fryr = tat1) +
aQ'k+1 ( k42 3\+1) aq

k+1
Similarly, from (102) we have

(tks1 — tk)) (107)

S

e R [lmﬁf —V(i)] (tirr —t:) =

atk+l N 6tk+1 prd 2
9 1 1% 1 —
ot [(Emﬁi - V(k)) (tesr — k) + (Emﬁﬁﬂ —Vi(k+ 1)) (tisa — tk+1)] -
k1
o 1 (g —w)® -
9 - V() (ter1 — t
Ot [2m trep1 — bk (B) (tegr — i)+

1 (g2 ~aer)® o
_m(q‘“—q‘“‘l) —Vi{k+ 1) (tpye — tk+l)] =
2 trpo =t

1 (get1 ~ @) = 1 {gey2— @41)? =
St Lad S LT 7/ WEP AR Lk S Se VS v A I
27 (teyr — te)? ) 27 (trpo — try1)? ( )

(3t + T+ 1) — (o2 + V(8 (108)

From (107) and (108) we see that equations (105) and (106) imply

_ _ 1 (OV(k+1) av (k) )
— T = — e | = gy — gy + ter1 — b 109
Ukt — Vi m( Oqeet (te+2 — trt1) Odirr (tr+1 %) (109)
(%m% +V{k+ 1)) — (%mvi +V(k)) =0 (110)

In order to resolve certain pecularities which arise in the application of

(109)-(110) to the simple harmonic oscillator, D'Innocenzo et al [D’Innocenzo et al 1987]

have proposed a new definition for V(i) given by (104). They propose that
V(i) be defined to be B
V(i) =V(g) (111)

With the modification due to D’'Innocenzo et al, the discrete mechanics equa-
tions of T.D. Lee become

I(M

Vg1 — Uk = —5—
2m \ Oy,

oV (7,)
) —tk)) (112)

(trpz — tagr) +
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(%mﬁ%H + V(aw)) = (%mvf + V(m)) =0 (113)

where
_ Qe+1 + G
T = +T (114)
T = Qe+t — Gk (115)
by — Lk

We now derive the DTH equations for Newtonian potential systems. The
Lagrangian function corresponding to the energy given by (92) is

Lig,2) = ymo* = V(g) (116)

Using Legandre’s transformation we have

p= oo =mu (117)

and

H(g,p) = pv—L{q,v)
= pv— (%mv2 — V(q))

= p(=p) = grlp) + V()
= PV (118)

Substituting (118) in equations (84)-(86) we obtain

Qry1 — 7 1 _ _
%‘1 = 5= [/\k+1pk+1 + ’\kpk] (119)
Pry1 — Pk 1 OV (Gopy) V()
Petl Tk _Z_ | Ak 0
At 2 [ FH 011 A aq; (120)
1 _ _ 1 _ _
("é?n‘pf'“ + V(G‘HL)) - (%Pf + V(Qk)) =0 (121)
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Equations {119)—(121) are the reduced form of the DTH equations given
by Corollary 1. Substituting (118) in equations (68)—(70) we obtain the
additional equations

s 1

qr = E/\-k]_)k (122)
=1 av(qk)

= )\ TR
P k o (123)
o= A (124)

The equations of T. D. Lee with the modification due to D’Innocenzo et
al, that is, equations (112)—(115) and the DTH equations, equations (119)-
(124) determine identical values for G, Ty, Py, and # for k=0,1,.-- N —1.
We can show this in the following way. Dividing both sides of (112) by A7
and multiplying by m we have

Mgy — MV _ 1 OV (Ty11) (tk+2 — tk+1) + oV (g, (tk+1 - tk)
AT 2| 9y, AT g, AT

Equation (122) and (124) imply that

3

D = xal

3

=t

- t,u qk
= mu (125)

Lol

From (124) and (125) we have
Deg1 — D _ 1 [/\ OV (Gi41) BV@A-)]
——— = == A + Ap
! Iy g,

AT 2
which is identical to equation {120). Using (125) to substitute for T and
Tgy1 10 (113) results in equation (121). Finally, from equations (114) and
(115)

Gepr — 9 _ 1 [Qk+2 + @1 G (Ik]
AT AT 2 2
_ 1 [((Ik+2 - Qk+1) (tk+2 - tk+1) + (Qk+1 - flk) (tk+1 —tk)]
2 tk+2 - tk+l AT tk+1 — tk AT
1 - _
= 3 [FrprThqs + Tl ] (126)
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Using equation (124) to substitute for £} and ¥}, in (126) we have

Q1 — Tk
AT

From (125) it follows that (127) can be expressed as

1
= 5 [Ak+1-ﬁk+1 + Akﬁk] (127)

Tep1 — U

1 - —
™ [Nt 1Prar + \ePi]

which is identical to equation (119). Thus, for Newtonian potential sys-
tems, DTH dynamics and the discrete mechanics equations of T. D. Lee
with the modification of D’'Innocenzo et al, determine identical piecewise-
linear, continuous trajectories for the position coordinate q. However, only
DTH dynamics determines piecewise-linear, continuous trajectories for the
momentum coordinate p.

Next we present numerical results for two Newtonian potential systems—
a simple pendulum with the potential function

V(g) = —cos{q) (128)

and an inverse square law system with the potential function

1
q
The value m = 1 is used for both systems. (Numerical results for the Kepler
problem in Cartesian coordinates are given in [Shibberu 1992].)

The DTH equations, equations (84)-(86) are singular when A7 = 0. A
straight-forward application of Newton’s method to these equations is likely
to result in poor convergence when A7 is small. Instead, a two-step itera-
tion procedure is used. First, equations (84)-(85) are solved using Newton’s
method with Ag4; fixed. Then, equation (86) is used to solve for A, 1, again
using Newton’s method. The details of the algorithm are given in [Shib-
beru 1992].

Shown in Figure 2 are the exact trajectories and the corresponding DTH
trajectories for the position and momentum coordinates of a simple pendu-
lum. The DTH trajectories are piecewise-linear and continuous. The errors
in the position coordinate, g, for four different schemes for the pendulum are
shown in Figure 3. (Discrete Mechanics in Figure 3c refers to the discrete
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Figure 2: A trajectory of a simple pendulum and the corresponding DTH
trajectory for AT = 1.07145.
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(a) midpoint scheme (b) trapezoidal scheme

0.8
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0.4
0.2

o Qo oo
b o h o

(c) discrete mechanics (d) DTH dynamics

Figure 3: Errors in g for the trajectory of Figure 2. For (a)-(c) At = 1. For
(d) At = 1.07145.
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Figure 4: The trajectory for an inverse square law potential and the corre-
sponding DTH trajectory for A7 = 1.843271.

mechanics of Greenspan.) Because of the varying time-step of DTH dynam-
ics, a slightly larger initial time-step was used for DTH dynamics so as to
keep the total number of steps the same for all the schemes. Figures 4 and 5
show results for the inverse square law system. From Figure 3 we see that
for the pendulum, DTH dynamics has roughly the same level of error as the
other schemes have. For the inverse square law system, however, DTH dy-
namics has roughly an order of magnitute less error than the other schemes.
The explanation for this difference in error can be seen in Figure 6. For the
initial conditions chosen for the pendulum, the time in DTH dynamics be-
haves in a nearly linear fashion resulting in a nearly uniform time-step. Time
behaves in a nonlinear fashion for the inverse square law system. The effect
is a nonuniform time-step which reduces the error of DTH dynamics. Figure
7 shows the exact and the DTH phase-plane trajectories for the simple pen-
dulum and the inverse square law system. The linear segments of the DTH
trajectories are tangent to the energy conserving manifolds of each system.
As was described in section 5, a sufficient condition for the existence and
local uniquenss of DTH trajectories is the condition ¥(gp, pg) # 0 where

‘I’(Qap) = qu(Hp)2 - 2quHqu + pr(Hq)2

The shaded regions in Figure 8 show where in the phase plane this condition
does not hold for the simple pendulum and for the inverse square law system.
Convergence of the two-step iteration procedure described above degrades
near the shaded regions shown in Figure 8.
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Figure 5: g for the trajectory of Figure 4. For (a)-(c) At = 1. For {d)
AT =1.843271.
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(a) simple pendulum {b) inverse square law
(AT = 0.107145) (AT = 0.1843271)

Figure 6: Time parametrization of DTH trajectories.
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Figure 7: DTH trajectories and energy conserving manifolds.
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Figure 8: Phase portraits. Shaded regions indicate where ¥(q, p) = 0.
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7 Hamiltonian Systems with N-Degrees of
Freedom

In this section we summarize results for nonautonomous Hamiltonian systems
with n-degrees of freedom. Assume the points 7, £ = 0,1,--- NV partition
the interval [rp, 7n] into N equal intervals of length At = (v — 7)/N.
Assume % : [1p, Tv] —> R2**? is a piecewise-linear, continuous function of 7
where z®) = 2(7) are the vertices of 2(-). Define 2® = (z*+1) 4 z(®)}/2 and
z'®) = (z*+1) — 28} /AT, for k = 0,1,--- N — 1. The N — 1 values of z*
and z2'® completely determine Z(-).

Consider a Hamiltonian system with Hamiltonian function H(z) where
z = (q,p)? and where q,p € R"*! are the position and momentum co-
ordinates. (In this notation, z,4; is the time coordinate and zp,4g is the
momentum coordinate conjugate to time.) The matrix J is defined to be the

skew-symmetric matrix
0 I
J — ﬂ+1
[ i1 0 }

where f,4; is the n + 1 by n + 1 identity matrix. The following discrete
variational principle is used as the definition of DTH dynamics.

Definition 7 (DTH Principle of Stationary Action) A DTH trajectory
is a piecewise-linear, continuous function z : [19, Tn] — K22 for which the
sum:

A[ATr )‘03 " /\N—lyz(')] =

is stationary. The endpoints @ and p'Y) are assumed fized. For a Hamilto-
nian system with a Hamiltonian function H(z), the function H(z) is defined
to be:

H(z) = 22042 + H(z)
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The equations of motion for DTH dynamics are given by the following
theorem.

Theorem 6 (DTH Equations of Motion) 4 piecewise-linear, continuous
function % : |1y, Tw] — R®"*? is a DTH trajectory if and only if zM) and
z'(®) satisfy the following equations:

gt} gk oM (zk+1h IH (7))
—ar T3 MhTggmEm tMTm | k=0l N =2
(130)
_ oH(z™)
z,(k):,\k_y_é_z_m_ k=01,--N-1 (131)
HEZHM)=0 k=0,1,---N -1 (132)

Theorem 1 is proved by equating the partial derivatives of A [AT, Ao, -+ - Ay_1,2(+)]
to zero and simplifying the resulting equations. The details of the proof are
given in [Shibberu 1992].

The following theorem gives sufficient conditions for the existence and
local uniqueness of DTH trajectories.

Theorem 7 (Existence and Uniqueness of DTH Trajectories) Assume
H € C3U) where U C R**? is open. Assume also that Ay > 0 and that
there exists a Z0 € U such that H(Z®) = 0 and ¥(Z®) # 0 where:

V(2) = [TH.(2)]" Heol2) [TH.(2)]
Then, for any positive integer N, there exists a time step AT and a locally
unique piecewise-linear, continuous trajectory determined by Z*) and 7'M,
where %) and 2'® satisfy the DTH equations of dynamics.
The proof is based on the Newton-Kantorovich Theorem and is given in
[Shibberu 1992].
8 Conclusions

The DTH principle of stationary action is the bases for the discrete-time
theory of Hamiltonian systems presented in this article. Unlike the discrete
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principle of least action (Definition 4) the DTH principle of stationary ac-
tion completely determines piecewise-linear, continuous trajectories in the
extended phase space of a Hamiltonian system. These trajectories exactly
conserve the Hamiltonian function at the midpoints of each linear segment
and exactly conserve at the vertices all conserved quadratic functions. The
DTH equations of motion are also equivariant with respect to a collection
of piecewise-linear, continuous symplectic coordinate transformations which
are consistent with a special triangulation of phase space [Shibberu 1992).

As we have shown in Theorem 5, the modified discrete action used in
the DTH principle of stationary action can be used to define a generating
function for transformations between the vertices of DTH trajectories. More
work needs to be done in this direction, possibly by deriving a Hamilton-
Jacobi equation for DTH dynamics.

The existence and uniqueness results given in Theorem 7 show that DTH
dynamics can be used to simulate a very broad class of Hamiltonian sys-
tems. For Newtonian potential systems, a subclass of Hamiltonian systems,
we have shown that the discrete mechanics of T. D. Lee, with the modifica-
tion due to D’Innocenzo et al, and DTH dynamics, both determine identical
piecewise-linear, continuous configuration space trajectories. However, only
DTH dynamics determines piecewise-linear, continuous phase plane trajec-
tories. In DTH dynamics, as in the discrete mechanics of T. D. Lee, time is a
dependent dynamic variable. For linear systems, such as the simple harmonic
oscillator, time behaves linearly resulting in DTH trajectories with vertices
that are uniformly spaced in time.

DTH dynamics could prove to be useful in studying the long-time behav-
ior of Hamiltonian systems. DTH dynamics could also prove to be useful
as part of new algorithms for solving problems in optimal control theory.
An error analysis of DTH dynamics has yet to be completed, but simulation
results are encouraging [Shibberu 1992].
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