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ABSTRACT

DISCRETE-TIME HAMILTONIAN DYNAMICS

Publication No.

Yosi Shibberu, Ph. D.

The University of Texas at Arlington, 1992

Supervising Professor: Donald Greenspan

A discrete-time theory with properties similar to properties of the discrete
mechanics of Greenspan and the discrete mechanics of Lee is proposed for Hamiltonian
dynamical systems. Equations applicable to arbitrary Hamiltonian systems are derived from
a discrete variational principle. The equations completely determine piecewise-linear,
continuous trajectories which exactly conserve the Hamiltontan function at the midpoints of
each linear segment and exactly conserve, at the vertices, all conserved quadratic functions.
For autonomous, positive—definite, linear systems, the equations have solutions identical to
solutions obtained by the trapezoidal and midpoint methods. Existence and uniqueness
results are presented along with some preliminary work on the coordinate invariance of the

theory.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS  .oirieeivciriiessinmteissssestranmanssnsiesmiremsassrsmssissensassasnnnnsssess iv
ABSTRACGCT  ciimiiecciisissisenstaerimnmesratsasssstnsas s sissransssnssrassmsn e vassasassans nes tonsansannnnses v
ILLUSTRATIONS e rttinici e resstses e ssnaat e ne st raasasemnsmmnnatsan s anasnmn s vpanse aennas viii
N 3 OO OO ix
INTRODUCQGTION  .ccoicciivicsrirtanniniensetirassissasssnsesssrsasaserasanssnsestsassssasansesessesaasansansnsass 1

CHAPTER 1 AUTONOMOUS SYSTEMS WITH ONE DEGREE OF FREEDOM

1.1 Variational Principles of Mechanics ........ccccvarissemiememrnnrenecsssncaccavensesseeresense 3
1.2 Piecewise-Linear Continuous Functions ......ccccciiicieeciinmnenssneeismenn. 7
1.3 Discrete Principle of Least Action .cccicivcimmmmemreriiisienimninincasssiessnes 10
1.4 Preliminary Difference EQUations .......ccooviceisvessirisancncnnrernensanesismsnessenssss 20

CHAPTER II “DTH” DYNAMICS
2.1 Symplectic Notation .eiceiciiviiiiiimimimsiamen st sesesmsmsensnsnessans 23
2.2 DTH Principle of Stationary Action ..ccceivvviricviiriniinsnmsnsinesersnieiocrone. 26

2.3 Conservation Laws of DTH Dynamics ..ot crerienenesiememncssecna. 33



CHAPTER III EXISTENCE AND UNIQUENESS

3.1 PrElIMINATIES  weeeouerrersermesssrssssrassersersssssansasmmeanssessemenssssnessesmessmsssssaranerssssesan

3.2 Existence of a Decoupling Function .......ccoiimmicvinmsiiiectnnioneeecerinaaneenas

3.3 Hamiltonian Conservation ConStTAINt ...cvccececrrreermsicimreressememmesersasrerarssssnrans

3.4 Local Existence and Uniqueness of DTH Trajectories ....c.ccccovveesccocrnmensanses

3.5 Autonomous Positive-Definite Linear Hamiltoniap Systems ......... eorerneennes

CHAPTER IV NUMERICAL RESULTS

4.1 An Algorithm for Computing DTH Trajectories .......c.ccecucscemmmrmenmisennses

4.2 The Kepler Problem in Cartesian Coordinates ......ccuceeivecresesscssmsereisacnnens

CHAPTER V COORDINATE INVARIANCE .ciiiimcvcintinemnensetisanmsensessssnnsens

REFERENCES

36

39

44

56

59

63

63

80

86



Figure

1.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4,11
4,12
4.13
4.14
4.15

5.1

ILLUSTRATIONS

A piecewise—linear, continuous function. .ccicciemircircirenenie e,
Kepler problem, 25 points per orbit, 1 orbit.  ..eerereeimrnnnvniennenes
Kepler problem, 25 points per orbit, 1 orbit.  .ercicirireninininvcnnes
Kepler problem, 25 points per orbit, 1 orbit.  .ccciremrervirirennnnes
Kepler problem, 25 points per orbit, 1 orbit.  ..cccceiricciicraraees
Kepler problem, exact orbit, 25 points per orbit, 400 orbits. ........

Kepler problem, trapezoidal method, 25 points per orbit, 400 orbits.

Kepler problem, midpoint method, 25 points per orbit, 400 orbits.
Kepler problem, discrete mechanics, 25 points per orbit, 400 orbits.

Kepler problem, DTH dynamics, 25 points per orbit, 400 orbits.

Kepler problem, trapezoidal method. .o crnes
Kepler problem, midpeint method. .o
Kepler problem, discrete mechanics.  .icvvinciciicciisnvescssensassnnnnenense
Kepler problem, DTH dynamics. .....cccccarenrincissmninscereressannannnssisnas

Kepler problem, 200 points per orbit, 1 orbit.  .weceeecemienevrrieeen

Kepler problem, Poincare sections, 100 points per orbit, 3,500 orbits.

A triangulation that is consistent with a collection of piecewise~linear,

continuous trajectories.  ...iivcsicceccscsncniiesese e aesaene

65

66

67

68

69

70

71

72

73

74

75

76

77

78

78

80



TABLES

Table Page

4.1 Average absolute deviation in energy and angular momentum during
400 orbits of the Kepler problem with 25 points per orbit., ....cccciviiecccnrvvences 64



INTRODUCTION

Hamiltonian systems are used in a wide variety of applications ranging in scope
from quantum mechanics to optimal control theory. Computational methods which preserve
their special structure are, therefore, of considerable interest.

Newtonian potential systems, a subclass of Hamiltonian systems, can be simulated
by using the discrete mechanics equations developed by Greenspan [6]. These equations are
invariant with respect to rotation, translation and uniform motion. For the Kepler problem,
for example, the equations exactly conserve energy and aﬁgular momentum in cartesian
coordinates. Labudde [8] has extended the discrete mechanics of Greenspan to include a wide
variety of Hamiltonian systems.

More recently, using a Lagrangian formulation, T. D. Lee [10] has developed a
discrete mechanics in which trajectories in the configuration space of a system are assumed to
be piecewise—linear and continuous. The average value of the energy of a system over each
linear segment of the trajectory is conserved at each time step. A distinctive feature of this
discrete mechanics is that time plays the role of a dynamic variable.

Symplectic integration schemes have become an increasingly popular way to
integrate Hamiltonlan systems. Wu [12] has shown that these schernes admit a natural
discrete variational principle. In this way, symplectic schemes may be viewed as a type of
discrete mechanics.

Discrete mechanics schemes are distinguished irom conventional numerical schemes

. in that they are based on fundamental principles as opposed to approximations of differential
equations derived from continuum mechanica. In fact, Lee [10] suggests that discrete

mechanics may be even more fundamental than continuum mechanics. The finiteness of



physical reality and the dilemmas that the concept of infinity introduces in the continuum
theory have been pointed out by Greenspan [6]. These dilemmas do not occur in the discrete
theory.

In this thesis, we propose a general discrete-time theory for Hamiltonian systems.
The theory is based on a new variational principle which completely determines piecewise—
linear, continuous trajectories in the extended phase space of a Hamiltonian system. In the
spirit of Hamiltonian dynamics, the theory is completely symmetrical in the way it treats
position and momentum. Like the discrete mechanics of Greenspan, the theory exactly
conserves energy and conserved quadratic functions such as angular momentum. Like the
discrete mechanica of Lee, the theory treats time as & dependent variable. For the simple
harmonic oscillator, the theory reduces to the conventional trapezoidal and midpoint schemes
commonly used to integrate differential equations.

In Chapter I, we review the variational principles of continuum mechanics and then
introduce the basic ideas of the theory for the case of autonomous systems with one degree of
freedom. In Chapter I, a discrete variational principle is proposed and used as the basis of
the theory. Equations of dynamics are derived and conservation laws are proved. In Chapter
III, local existence and uniqueness results are given for general Hamiltonian systems and
global results are given for autonomous, positive—definite, linear systems. In Chapter IV, we
present numerical resuli.s for the Kepler problem (also known as the one body central force
problem). Finally, in Chapter V, we discuss some preliminary results on the coordinate

invariance of the theory. - -



CHAPTER 1

AUTONOMOUS SYSTEMS WITH ONE DEGREE OF FREEDOM

1.1 Variational Principles of Mechanics

Hamilton’s principle is probably the most widely known variational principle of
mechanics. This principle states that the integral 3 given by (1.1.1) is stationary for the

trajectory q(t) of a dynamical system with Lagrangian function L(q, @) [3].
t

§ = JL(q(t),c';(t))dt | (L1.1)

&
The principle of least action is another variational principle of mechanics. The following

motivation for the principle of least action is based on [9]. Consider now Legendre’s

transformation § — p and L(q, q) — H(q, p} where p and H(q, p} are given by:

p = alg::;—q) (1.1.2)
H{g, p) = pa(p) — L(q, 4(p)) (1.1.3)

For the problems to be considered, q(p) in (1.1.3) can be obtained by solving for q in

(1.1.2). Under Legendre’s transformation J can be expressed as:

3 = J[ pa — H(g, p) ] dt (1.1.4)

Consider a reparametrization of time given by t =t(r). With this reparametrization (1.1.4)

 becomes:

_ dq/dT dt
i = [[PW—H(q,P)]g dr

T



Multiplying by % we have;
r

3 = Hpj_g_ﬂ(q, p) 3t|dr (1.1.5)

1

Define p = —H(q, p) and substitute p in (1.1.5).

T2
d
J = J[pﬁ +p ad—;‘-_]dr (1.1.6)
™1

The integral (1.1.6) is called the action integral of a Hamiltonian dynamical system. The
structure of (1.1.6) suggests that just as p is the momentum coordinate corresponding to
q, § Iis the momentum coordinate corresponding to t. (It is important to note that the
variable t in (1.1.6) is a dependent variable, the independént. variable being 7.)
DEFINITION 1.1: (Action Integral)
Assume p(-), a(-), g(-), and t(-) are differentiable functions of 7 on the interval
[fg 7y] where q and p are the position and momentum coordinates of a

Hamiltonian dynamical system. The action integral of a Hamiltonian dynamical system
is defined to be:

T

N,
AG(-) a(-)s p(+), () = j[p(r)d‘j—@Jr p(r)w} ar (LLT)

To
The trajectory of a Hamiltonian dynamical system can be obtained from the following
principle.
DEFINITION 1.2: (Principle of Least Action)
The trajectory of a Hamiltonian dynamical system with Hamiltonian function H(q, p)

is given by functions p(-), q(+), p(-), and t(-) which cause the action integral to be
stationary under the constraint:

p + H(q, Ip) =0 (1.1.8)

The endpoints of q(+) and t(-) are to be specified.

. The constraint (1.1.8) in Definition 1.2 is necessary because p has been defined to be equal to

~H(q, p) in (1.1.6).



In the following theorem, the principle of least action is used to derive the
dynamical equations of a Hamiltonian systertn. A discrete version of the principle of least
action will be used in Theorem 1.9 to derive equations for discrete-time dynamics.

THEOREM 1.3:
The trajectory of a Hamiltonian dynamical system with Hamiltonian function H(q, p)

and initial conditions q(r,)=4q,, P(7,) =P, t(r,)=0, and p(r )= —H(q,, p,)
is & solution of the following system of differential equations:

g_g. = ,\(T)aﬂ_gi;i) (1-1.9)
j_g - _ A(T)@%‘éﬂ (1.1.10)
% = A7) (1.1.11)
gi: — 0 (1.1.12)

The function A(r) is an arbitrary function which determines the parametrization of the
trajectory.

Proof:
The principle of least action states that the trajectory of 2 Hamiltonlan system

causes the action integral (1.1.7) to be stationary when subject to the constraint (1.1.8).

Define:

gw pp) = p+H(qp) (1.1.13)

F(P(-) a(- ) 9(-) 1) M) = AG(daC-) p(-h ) —
™
J X7) s(q(f), p(7), so(r)) dr (1.1.14)

To

where A(7)} is a differentiable function of 7. From (1.1.7), (1.1.13) and (1.1.14)



™
f(p(-) a(-) o(- ) t(-), A(-)) = IL(q(f), q'(r), P(7), t'(7), p(7), A(r)) dr  (L.1.15)

To

where L{q, q,p, t', o, A) = [pq’+ pt’ — A(p+H(q, p))] (1.1.16)

and where the notation q’ and t’ has been used for d?j(:) and dfi(:) . The action integral

subject to g(q, p, p) =0 is stationary when the functional f given by (1.1.15) is stationary.

The functional f is stationary when the following Euler-Lagrange equations are satisfied:

&:I_T(%) _ g_ll; = 0 (1.1.17)
%(%) - %% =0 (1.1.18)
.&d;(%) _ 3_2 =0 (1.1.19)
Ed;(%;l_;) - .fi% = 0 (1.1.20)
) -5 - o a2

Substituting the Lagrangian function (1.1.16) in equations (1.1.17) —(1.1.20) we arrive at

equations (1.1.9) — (1.1.12). Substituting (1.1.16) in (1.1.21) results in the identity:

p(r} +H(q(7), p(r)) = 0 (1.1.22)

Claim: (1.1.9)—(1.1.12) imply (1.1.22) independently of equations (1.1.21).

Proof of the claim:

dH(g(r), p(r)) _ sHdq , oH dp
— . = St S E (1.1.23)

: Substituting (1.1.9) and (1.1.10) in (1.1.23) we have that

dH _ OHOH _ GHOH Y _
= (% ap 6paq)_0



Therefore, (1.1.9) and (1.1.10) imply that H(q(r), p(r)) is constant. Equation (1.1.12)

implies p(7) is constant also. We have then that:

p(r) + Hlg(7), p(m] = p(r,) + Hla(r,)p(r,)] = 0

as claimed, because from the initial conditions, q(7y)=9qy  pP(rg)=p; and

p(r,) = —H(q,p,)- |

The claim in the proof of Theorem 1.3 shows that for the Lagrangian (1.1.16)
equation (1.1.21) is not independent from equations (1.1.17) —(1.1.20}. This dependence is
the reason for the arbitrary nature of A(v) in equations (1.1.9) —(1.1.12). The situation is

very different for the discrete-time theory to be discussed shortly.

1.2 Piecewise—Linear Continnous Functions

Assume the points 1

nt

n=0, 1, -« N, partition the interval [ry, 7] into N
equal intervals of length Ar.

T, = Tp + ndr n=0,1,---N (1.2.1)

n

where Ar = %‘-’- (1.2.2)

Let ®(-) be a piecewise-linear, continnous function of 7 as shown in Figure 1.1. Define:
x, = %(r,) n=9,1,---N (1.2.3)

These x_'s will be called "ve.fticés of %(-). Clearly, %(-) is completely determined by its

vertices, Define:

+
%= Xy Xp) = LT n=0,1,-N-1 (1.2.4)

%! = X (s ) = HL 0 n=01,-N-1 (1.2.5)



Xnt+1

n Tn41

FIGURE 1.1: A piecewise-linear continuous function.

(Note that X, in (1.2.5) is not the derivative of X  and that both X, and X! are
defined at the midpoints of the partition of [rs, Ty].) Since X(:} is piecewise-linear, it can

be expressed in terms of the values of X, and EL in the following way:

il + E.‘:I. (T—:Fn) Tn S T <Tn+1 n=0, 1,-.- N_l
() =
XN T =TN

(1.2.6)

T — Tn+1 +Tn

where o )

Thus, X(-) is completely determined by the values of X, and i;, n=0 1, --- N-1,
Since X(-) is continuous, X, and X, must satisfy the following continuity constraint.

LEMMA_1.4: (Continuity Constraint)
A piecewise-linear, continuous function X(-) must satisfy the continuity constraint:

- - - F - f
xn+1— xn _ xn+l+ xn

= = ; (1.2.7)



Prool:
Since X(-) is continuous,

im_ X(r) = RX(r .1) (1.2.8)
T—Toi1 n+l

But from (1.2.6) the left hand side of (1.2.8) is:
l. ~ — 1- —-— = = — —-— fAYS
f—olgiﬁqx(r) T—I-E:;_H [xn + =) *n + xn( 2)

while the right hand side of (1.2.8) is:

o = - (—A
X(Tog1) = Ty T KL+1(TT)

Therefore,
X, + x::(TT) = Xt x:":+1( 2 T)
from which it follows that:
-— - - -}
1™ ¥n _ Xppt Xy
AT - 2

Because each of the steps in the proof of Lemma 1.4 is reversible, equation (1.2.7) is also a
sufficient condition for the continuity of piecewise—linear functions.

The following lemma will be used in the proof of Theorem 1.9.

LEMMA 1.5:

From (1.2.4) and (1.2.5) it follows that:

By 1 Ry _ 1 Ty _ a1 K, _ C 01N
Ty 2 Wy BT By, 2 By B T



1.3 Discrete Principle of Least Action

DEFINITION 1.6: (Discrete Action)

Given a partition of 7 from T, to Ty, the discrete action Ay of a Hamiltonian system
is defined to be:

N-1
AN(Po PN G0 - -9Ne PP bo o ty) = Z [Fiai"l' Eitﬂ Ar
1=0
where
- - Piyq1+ B
5 = B(Ppn P) = g

- - 9G+1— G -
T = Tlg41 @) = “H5—

AT
- - it B
B = Bileg p) = '—+"2——1
t, . — t:
) = tiltig &) = —5— AT :

The following theorem shows that for piecewise—linear, continuous functions, the action

integral given by Definition 1.1 is exactly equal to the discrete action.

THEOQOREM 1.7:

For piecewise-linear, continuous functions, the action integral and the discrete action
are equal.

AB(), 800 BCH D) = Ano P, G- Po Pt i)
Proof:

From Definition 1.1

AGC),AC), BOLTC) = Ha(r)d—"ﬁf,i’+a(r)d§—‘:’]dr
' TO

Since §(r) and ‘t‘('r) are piecewise linear, from (1.2.6) it follows that d—g(:)

=7 and
dt(r)

dr =T{ for ;<7 <7y, i=0,1,- - N-1. Therefore:

N Tig1 Tit1

F ol —1 —

ABCL ) BOVTON = 3 | [ Bnar + T [ Bmer
1= Ti T

10



si
ince Tivt

Jﬁ(‘r)d‘r = P;Ar

7
and

Tit1

Iﬁ(‘r)dr = BAT

7i
we have

~ ~ ~ a N-1 -
AG(-), AN BN = Y, [FEi+ Bilar
1=0

The right hand side is the discrete action Ay. Therefore:

AB(C) 801 B(-1 ) = AnlPo+ B 9o 9 P+ o, ot t) i

DEFINITION 1.8: (Discrete Principle of Least Action)

The discrete-time Hamiltonian trajectory of a system with Hamiltonian functlon
H(q,p) is given by piecewise-linear, continuous functions $(-), §(-), H(+) and T(-)
which cause the discrete action to be stationary under the constraint:

Pn + HE@,D,) = 0 n=0,1,- N-1 (1.3.1)

The endpoints qg, qy. Pg: Pyy: gy bty @ @nd gy are to be specified.

The constraint (1.3.1) is less restrictive than (1.1.8) since (1.3.1) is enforced only at discrete

points.

THEOREM 1.9: (Main Result)
The discrete—time Hamiltonian trajeciory of a system with Hamiltonian function H(q, p)

and initial conditions &(7,)=4q,, B(T,) =P, t.('ro) =ty, and P(7,) = —H(G,,P,)
is a solution of the following system of equations:

Ty — G OH( Gy pq0 Prga) 3H(q,p )
R e i
P - P aH q }B 3H '

Pn.;.‘:&'r Py — _%l: . ( q55-1+1 n+1) ,\n (9 qn 13'n ) :l (1.3.3)

11



[
+1 _ 1
-DTE = T[A a+ )\n] (1.3.4)
En+] B a1:| _
4 = 0 (1.3.5)
0 = p, + H(, P, (1.3.6)

where n=20,1, --- N-1.

Proof:
By the discrete principle of least action a discrete-time Hamiltonian trajectory is
given by piecewise-linear, continuous functions which cause the discrete action Ay to be

stationary under the constraint:

pn + H@Q,P,) = 0 n=201,--- N~1

where the endpoints qg, qy, Pgs PNy tos ty Po and oy are fixed, Let:

g(ﬁn! -ﬁn’ En) = .‘-Jn + H(Enl 3]1) (1'3'7)
N-1
(P * P 9o ANy Por * P tor e b AQ""\m) = Ay - Z:’\i 8@, B; F’i) (1.3.8)
1=

where the A’s in (1.3-.8) are Lagrange multipliers. We have then that Ay, subject to

g(@, Py P,) =0 forn=0, 1, ---N-1, is stationary when the partial derivatives of f with

the possible exception of Ot of of of of of of and i, are equal to
d Ipn

zero. The exception is necessary because the endpoints qg qy. Per PNy by tpw #p and

by are assumed to be specified and therefore partial derivalives with respect to these

variables may not be zero. From (1.3.7), (1.3.8) and the definition of Ay:

12



13
N-1

f{pg: - P90 “aNiP0 - Probor * b Ap - An) = Z[ﬁiaf +Bti— X ( + H(q; ipl))]A (1.3.9)
=0
. . . 8 af of of
Equating to zero the partial derivatives \ y , and for
& Ban41’ OPpyr’ Olnyy dpn41

n=0, 1, --- N-2 implies equations (1.3.2)—(1.3.5) as follows. From (1.3.9) for

n=0,1,--- N-2,
a{- ' N-1

The terms on the right hand side of (1.3.10) depend on p,,; only for i=n and i=n+1

Therefore:

o _ i) M- - -
Opnt1 Opap {ann+ Pn ‘\n(pn +. H(q,, Pn)) +

Pat19n41F Pryrbngr — '\n+1(5n+1 + H(@yy Pn+1)) } T

A, O8(@oy1y Poys) Pugr | 5
+ aﬁn-}-l 3pn+1
ap, op,
From Lemma 1.5, 5 Pn _ -%— and Pnt1 = % . Therefore,
Pnt1 OPus1

ofF _ E:‘.H + EL_L 3H( En+l’ -ﬁn+1) ’\naﬂ( qn’ pn ) AT
9pPnp1 2 2 P41

From the continuity constraint on g(-)

— - — -
Tpp T T G~ G
2 - AT

Therefore,

o _ {En+1 - q, - '%_ |:’\n+1 aH(—E‘ﬂ'l’ Pas1) '\naH( qn, o) :| } Ar

Pn41 AT 33n+1



_ 0q, 88(g, ) &4, ~ 0T
= {Pnaqn+l Ay 3- 39 ot + Panigm aqn+1 -

+1 3Gpta 34541

OH(q,, 41s Bpyy) 90 n+1} Ar

ag! aq!
From Lemma 1.5, 3 In _ L and 29041 = L Therefore,
Qn+1 AT 0qp 4, AT
I (5 NES SN .. 9P SO B ST IO
94y 41 AT 2 +1 aq, “
O _ 0 imph tion (1
3 = plies equation (1.3.3).
9n+1
of 8 ==t =TI _ — -
Opnp1 oy {ann+ Pabn A“(p“ + H(G,, pﬂ)) +
§n+1afn+1 + En+lt':l+l - '\n+1(5n+1 + H@n+1' B1.1+1)) }A"'
— aﬁn T 35_’:)“ + 35n+1 T An pn+1
a1 B MOpnyn 0 OPnga “a1” Y7y ntl
o op
From Lemma 1.5, Pn %— and “Po+r = % Therefore,
%ni1 Pnys1

T+t
o S e

3pn+1

14



From the continuity constraint on ‘E( -)

Tt Ty _ Tog1= by
2 - AT
Therefore,
ot _ | tann=ta _1_[ Ay + Al bar
a1 Ar 2 +1 ]
O — ¢ implies (1.3.4).
Pat1

N-1
of d ., = _ _
By = i 2 [P+ A% - A(F + 8@, B )|ar

= Bta— {3,.E;+ Paty, ~ A.,(E + H(T, 13,,)) +

Pos1Tns1t Parrtne — ‘\n+1(5n+1 + BG4 .ﬁn+1)) }A"'

_ ot _ ot/
{Pn = 4 Pn+1§{.'£1' }A"'
o1

at'l:l-i-l
8t 1 0% 1 1
From Lemma 1.5, Bty = Ar and 3tn+1 = —-%-- Therefore,

af _ ) _ Put1— Pn
Oy, { AT }AT

6taf = 0 implies (1.3.5). Finally, for n =0, 1, --- N-1,
n+1 o

-1
AL = &Y [+ BT - AEm + B@R )|ar

15



= (En + H(En! Bn) )
Equating (—9‘% to zero implies equation (1.3.6). l

The Discrete Principle of Least Action as stated in Definition 1.8 does not
completely determine a piecewise-linear, continuous trajectory. As we can see from the
equations of Theorem 1.9, the Discrete Principle of Least Action only determines the values of
Ay, T By Po, 2nd B, The values of T/, t/, B/, and B, remain indeterminate. The
following corollary shows that if variations in the endpoints of the momentum trajectories are
allowed, then the values of §! and t! are no longer indeterminate. The values of P! and
£. 1 however, remain indeterminate.

COROLLARY 1.10:

If the endpoints qp, qy. to, and ty are specified while the endpoints py, py, pp and py
are free to vary, then the Discrete Principle of Least Action implies:

8H( g, B,)

I = ,\n——aﬁ—n— (1.3.11)
o= (1.3.12)

where n=20, 1, --- N-1,

Proof:
Since Py, Pny pp and py are free to vary, the function f in (1.3.8) is
statlonary if in addition to the partial derivatives of Theorem 1.9 the partial derivatives 5%%,
of _af of o of of of

==, —=— and -="— are equal to zero. vating =——, =—, »=—, and = to zero
8PN' apo: aPN ) q Eq g apos aPN, 3"0’ aPN

implies equations (1.3.11) — (1.3.12) as follows. From (1.3.9) we have:

=z
et

o _ 8 N\ [=mi, =7 _ _
dpy Iy ¢ [piqi+ piti - "i(soi + H(T, F) )]Ar (1.3.13)

Il
(=]

The terms on the right side of (1.1.13) depend on p, only for i =0. Therefore,



af 8 |w=tr, =7 — -
= o [PoTat BTl — AfF, + B@,B)) [ar
— [ aﬁo 1 6H(Eo, Fo) aﬁo
= -—al: Gy ~— A 7. 3, Ar
. OH(, B,) | P
— - o o
= q, — A, 3, 3p, AT
From Lemma 2.2 6—§9 =1 # 0 and Ar # 0. Therefore, N implies:
d o 2 apl:l
gH(q , P
3. = ).o—(g%qul (1.3.14)
Similarly,
of 'S !
— - - —
B9, By L2 [piqi+ Pits — Ai(‘gi + H(G; B) )] Ar

o [pas+ BT - A + B, 7)) |ar

8p,,
aEu Ti 650
= [6‘ % t, — A 30, A
- op
= [t; - ’\o] aﬁ: AT
5.
From Lemma 2.2 62: = % # 0 and At # 0. Therefore, a—%f; = 0 implies:
o= ), (1.3.15)
af —_ 6 PSS = - f -y A -— H — A
don a_p;; pa;+ Bt — i(Pi + @pPi)) T

4 = = - o -
= By [pN-l TNt Praating — )‘N—l(pN—l + H@n.y Pyy) )] AT

17



By = OH@Gn_p) Py-1) PN
= q — A A
[ 3Py aN-1 N-1 PN 3P T
GH(Gy_ys Pny) | 9B
— - Y IN-1 1 N-1 A
I:q N-1 N-1 aﬁN-—] 3P T
— [ﬁ{\] _ '\N 16H@ﬂi‘ﬁN—l)j| AT
1 B Iy 2
%f]; = 0 implies:
I = na (1.3.16)
ar s N _
= 5.3+ B.t! — AP . B
o = o 2 [P+ BT - A+ BEE) )|ar
—_ a I — — - - —
= Bon [pN—l AN+ Pr-1tie — Ana (pN—l + H(Gy_y> Pyy) )] At
By = 0PN_1
OpN_
= [tN 1 AN-I] a 1 AT
- A
= [Tha = ] 55
O _ 0 imolies:
Bon 0 implies:

t N—]. = AN—l (1-3.17)

_ Using the continuity constraint, we can express equations {1.3.2) and (1.3.4) as follows:

Tt 8n _ 1 [, O Gr P |, (T, Fa) (L3.18)

18



?!n+1 + Txi 1
—— = 5 [ An+l + ’\n ] (1.3.19)

where n =0, 1; «+» N-1. Assume for some n, ) <n < N-2 that:

0H( T, ;)

e (1.3.20)
o= A (1.3.21)

Substituting for §. and t! in (1.3.18) and (1.3.19) and solving for §,,; and

Tl’

el Ve have:

OH( Tpy1» Poya)

Tyt = A ey (1.3.22)
?ri+l = A (1.3.23)

From (1.3.14) and (1.3.15) we see that (1.3.20) and (1.3.21) hold for n=0. By

induction, (1.3.20} and (1.3.21) hold for all n=9, 1, --- N-1. |

From the proof of Corollary 1.10, we can see that equations (1.3.16) and (1.3.17)
imply (1.3.11) and (1.3.12) independently of equations (1.3.14) and (1.3.15). Thus,
allowing variations in the momentum coordinates at n =N yeilds the same equations as the
equations obtained by allowing variations in the momentum coordinates at n=0. 1In
Chapter II we present a new variational principle which completely determines piecewise—
linear, continuous traject.ories for both position and momentum coordinates. The new
principle allows variations in the momentum coordinates at n =0 and variations in the

_ position coordinates at n = N.



1.4 Preliminary Difference Equations

Equations (1.3.2) —(1.3.6) of Theorem 1.9 can be written in a more compact form
as follows:
COROLLARY 1.11:

The discrete-time trajectory of a Hamiltonian dynamical system satisfies the following
systemn of equations for n=90, 1, --- N-1:

- - OH( G, 419 Puy1) 6H( g, P, )
941~ 9~ AQT l:An+1 5%::_1 =F + '\n 631: = = 0 (141)

—-— — AT
n+1 n 2 [An-[-l aﬁn 1

+ Anaﬂtg.g;.ﬁ“)] = 0 (1.4.2)

(G, Pogy) — H(GwB) = 0 (1.4.3)

Proof:

Equations (1.4.1) and (1.4.2) follow directly from (1.3.2) and (1.3.3). From
(1.3.6) we have p = —H(q,, §,). Substituting for p_ in (1.3.5) we obtain (1.4.3). Once
Antg is obtained from equations (1.4.1)—(1.4.3) t,,, can be obtained explicitly from

equation (1.3.4). | |

We will refer to equations (1.4.1) —(1.4.3) as the preliminary difference equations
for autonomous Hamiltonian systems. From equation (1.4.3) it is clear that discrete-time
Hamiltonian trajectories.exa.étly conserve the Hamiltonian function at the midpoints of each
linear segment. For systems with time dependent Hamiltonians, the right hand side of

_equation (1.3.5) is not zero, and therefore, the reduction implied by Corollary 1.11 no longer
' holds true. (A formulation which includes time dependent systems is presented in

Chapter II.)
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We turn now to some preliminary considerations of existence and uniqueness of
solutions to the preliminary difference equations (1.4.1)—(1.4.3). It is obvious from
(1.4.1) - (1.4.3) that X 43 = —Ap, 94;= §, and ©P,,= B, Iisa solution
However, this solution is constant since if A,43 = —An, equation (1.3.4) implies that

t t_. Clearly we are interested in solutions for which the time, -fn, increases with n,

n+1 = n"
Do nonconstant solutions exist? To simplify the discussion of this question, we will focus on
only one time step. We will use A5 q,, and p,, torepresent A, qQ, and P, and we

will use q, p, and A to represent An,4q, En+l' and .ﬁn+1‘ We will also use h to

OHG) g FDE)  and we will use 1

represent Ar, Hq and Hp tc represent g
OH(q,: P,) 0H(q,, p,)
o o'tYo oo
and Hp to represent —aq and —a
Using the above notation, one step of the preliminary difference equations can be

expressed as

f(qp,d) = 0 (1.4.4)

where _ .
h 0
979%™ T(AHP+ "OHP)
@) = |p—po+ LA +2H) (1.4.5)

H(q,p) - H(q, Pp,)
B _

Let Df represent the Jacobian matrix of f. Then by direct computation we have:

0 1

‘ h
1-GhH, -EYE,,  -3H,
_ hA hA h
of = | (Ghn, 1+EhE,  Im (1.4.6)
Hy H, 0

21



and
det(Df) = —hz(-:ll)\l‘(q,p) (1.4.7)

where
U(q,p) = Heq(Hp)? — 2HgpHH, + Hpp(H)? (1.4.8)

From (1.4.7) we see that the preliminary difference equations are singular when h =0.
Assuming J\,, q, and p, are given, we will prove in Chapter IIl that for all sufficiently
small nonzero values of h, a sufficient condition for the existence and local uniqueness of

solutions to the preliminary difference equationsis ¥(q,,p,) # 0.
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CHAPTER II

“DTH” DYNAMICS

In this chapter we present a discrete variational principle for Hamiltonian systems.
We show in Section 2.2 that unlike the Discrete Principle of Least Action, this new
variational principle, called the DTH Principle of Stationary Action, completely determines
piecewise-linear, continuous trajectories which we name DTH trajectories. (DTH is shorthand
notation for Discrete~Time Hamiltonian.) The conservation laws of DTH trajectories are

described in Section 2.3.

2.1 Symplectic Notation

Let I.,, represent the (n+1)x(n+1) identity matrix. Let J represent the

{2n+2) x (2n42) skew-symmetric matrix:

0 Ly
] = , (2.1.1)

L_Inﬂ 0

Direct computation shows that
_ -

. Ly 0
32 = (2.1.1)

i 0 _In+1J

and

#)TI(z) = 0 forall zeR¥™H2 (2.1.3)

Let q=(q;-" q, t)T where t represents time and let p=(p;:-: p, p)T where p is
. defined as in (1.1.6). As in Theorem 1.3, we can show that the Principle of Least Action

implies that the trajectory of an n-degree of freedom, possibly time dependent, Hamiltonian



system with Hamiltonian function H(q,p) is a solution of the following system of differential

equations:
dq
= = A(T) Hp (2.1.4)
d
& = ~A)Hg (2.1.5)
where a_H ﬂ
dq, dp,
Hq = Hp =
dH dH
09,41 | OPry
and where
H(q,p) = Ppy1 + Hlg,p) (2.1.6)

(Note that p and gq in equations (2.1.4)—(2.1.5) are vector quantities, not scalar
quantities as in equations (1.1.9)—(1.1.10) of Theorem 1.3) Since t=gq_,; and
p =Pp,;1» the equations which correspond to equations (1.1.11) and (1.1.12) of

Theorem 1.3 are:

da, oH

_d;'__ = A(T) m (2. 1.7)
dp, 41 oH

4 = - A(T) Py {(2.1.8)

Let z=1(qy - Qu47: Py"** P +1)T. Using the skew-symmetric matrix J, equations

(2.1.4) and (2.1.5) can be combined into one vector equation:

& = Mr)IH) (2.1.9)



where : H,

Equation (2.1.9) is known as the symplectic form of equations (2.1.4) — (2.1.5).
Next we generalize the results of Section 1.2 to vector valued functions. Consider a

vector valued, piecewise—linear, continuous function 2 : [re, Ty] — R?>®+2, Asin Section 1.2,

we can express 2(-) in terms of the valnes of 7 and 7'®),

) = { =(k) +"z"z(:(r -7) 7 Sf;i:“ 2.1.10)
where
E(k)(z[lﬁl)’ z(k)) _ z("+1)2+ 20
E’(k)(z(k+l), z(k)) _ z(“*'g; 7%
for k=0, 1, N-1.

Applying Lemma 1.4 to each component of Z(-) results in the continuity constraint:

=(k+1) =(k) w (k1) | =t(k)
R (2.1.11)
From the definition of E(k) and 'i"(k) we have:
az(k) II ﬁ'(k) _ 1 I
8,05 — 2 8. ~ ~Ar
k=0,1,-.-N-1 (21.12)
B'E(k) 1 I [73 (k) 1
(1) ~ 2 ¥ ~ At

where I is the (2n+2)x(2n+2) identity matrix and where we have used the following
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notation:

a9 _[#0] g _[&®
8z | 8z(® 620 | oafR)

g [80 ] g [ &
z(k-I—l] 3z§k+l) az(k+1] - az][k+1)

i,j=1,2 2042

2.2 DTH Principle of Stationary Action

The following variational principle is used as the definition of DTH dynamics.

DEFINITION 2.1: (DTH Principle of Stationary Action)
A DTH trajectory is a piecewise-linear, continuons function Z : [ro, 7] — R¥+2 g
which the sum:

""(AT:'\O: ot AN—ll E( ' )) = %(q(O))Tp(D)
N-1 i) G .
+ Y [1ETIE®) + yuE)ar
=0
+  Yg)Tpm) (2.2.1)
is stationary. The endpoints q(® and pM™) are to be specified. For a Hamiltonian
system with Hamiltonian function H(z), H(z) is defined to be:

Hiz) = 2y, + H(z) (2.2.2)

Since zg,, 5 =py,; and (z)T: (q, p)T equation (2.2.2) is the same equation as equation
(2.1.6).
TBEOREM 2.2: (Main Resuit)

A piecewise-] near, contlpuous function % : [, ™ — R+2 i3 4 DTH trajectory if
and only if Z ) and % satisfy the following equations:

) Slct1) 709
) _ 79 -,%—J[ HE ) A MO =1, N2 (2:2.3)

At = Pe) PPy
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(k)
0 _, 5 OHE)

k a_(k)

H(z) = o k=0, 1, N-1 (2.2.5)

k=01, N-1 (2.2.4)

Equations (2.2.3) —(2.2.5) completely determine DTH trajectories. We will refer to these
equations as the DTH equations of dynamics. It is important to note that the initial value of
'Z'gt)_*_z, i.e. P, must be chosen so that equation (2.2.5) is satisfied at k =0.
Proof:

Assume Z(-) is a DTH trajectory. From Definition 2.1, we have that for fixed
endpoints q(® and pM), A(.) is stationary at 2(-). Therefore, the following derivatives

of A(:) are equal to zero:

A _ _ _
a—z(m- = 0 k=0,1,---N-=2 (2.2.6)
dA _
—8p(°) = 0 (2.2.7)
a4 _
—aq(N) = 0 (2.2.8)
OA _ — vee Ne
o = 0 k=0,1,---N-1 (2:2.9)
where we have used the notation:
- _ _
aA T 8A 7 a4 T
az£k+1) apio} 6q£N)
aA — . aA . . oA _
Hz(k+1) ’ 6p(0) . dq(N)
_OA_
Lazi’;ilz’ | | oplh | ] q{, |

Equation (2.2.6) implies equation (2.2.3) as follows. For k=0, 1, -.- N-2 we have from

(2.2.1) that:

aA
fz{k+1)
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N-1 . . :
ey (fﬂ) (%(q(m)?p(o) + . Z[%(z-ﬁ))ﬁ@*m) +).ju(zﬁ))]a-.— + %(q(N))TP(N)) =
Z j=0

puizy ( GTIE M)+ 4 H(TY) + 3T E) 4 H E"‘*’))) A

100 &'® \Tir, =0 g™\ om(z™)
AT('( (k+1))” )+ %( z(k+1))‘] (z )“( (k+1)) Ta®

%(——ﬁ(k-l-]) ) J (_'(k"'l)) + 1 (6" (k1) ) T( ?(IH'I)] + '\k+1( 3E(k+l) )T OH( -z-(k+1)))

970+1) 5706+1) 5 0+1) k)

Ar (g ()17 + HE ) (-nT® +x01) MT )

=2

%(% I)TJ E.«(k+1) + %(__A%_ I)T( _J) E(k'H) +,\k+1 G I)T M( —(k+1)) ) _

Ar (%J (Er(k+1) + Er(l-:)) N %J (E(k"'” _ E(k))

2 AT

From the continuity constraint on Z(-) we have:

oA _ AR
SktD = AT (J( )
Het1) _ )
= Ard ((“—T“—)

Since J is nonsingular, (2.2.6) implies that:

e

T

dH H
10 a0 ”"az(k)))'

1 6H dH
)

("k+1 sy + A 6_(1:} ) )

-1 oH il ]
&7 = 31 (Akﬂ g +) + X 3z.(k))

k=0,1,--- N-2

Next we show that equations (2.2.7}) and (2.2.8) imply (2.2.4).

aA
3p(0)
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N-1

Car

350 (%(q(o))Tp(o) + @) + ATAOH(E@)) -

5;‘2(65(%01(“))%(03 + 47[@)7 5 - T O] + araH(T?, ﬁ“")) -

1.0 4 %[( 35f(o))'r 50 _ (gi((z))):r 70| + any ( aﬁ{o))T M

29 q(1) 4400
i |

_ A7z =/{0) Ar , _6H
3 4 + > /\0——63(0)

(1) — 4(0)
-9 Az (9 Ary OH  _

Ar {1 dM=d@ 1.0 8H
_TT[ET-I_Eq(}_,\OHﬁ(O) =

Thus,

3;:0) (%(q(ﬂ))Tp(U) + Z[%@G))TJ (Ef(.i]) + AjH(EG))]Ar + %(q(N))Tp(N)) _
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30
Equation (2.2.7) implies

7@ = i a?::') (2.2.10)

Similarly, from equation (2.2.8) we have:

aA
aq{N)

N-1 . . -
_aq‘?w (%(q(o))i‘pm) + Z[%(Em)TJ @) + ) n(zﬁ))]m + %(q(N))Tp(N)) =
i=0

) (—% G NTIE™Y) + A HE™Y) + aqtN))TpW) =

d 1A N-1hT =/(N-1 N=1}\ T o= #(N-
m(_zl[ﬁ( )) p'( )__(5( )) q( 1)] +

Ar MG, ) + %(q(NJ)TptN)) =

Ar| ENNT_ vy 67 NN vy qNINT on 1 (N} _
_2'[( 5qM) Jp ‘(‘aq(N—) ) 7 + Ak 3q(m) D T P =

FIEY 7 -G o) e Sty b -

AT =AN-1) _ 1 =(N-1) 1 A oH
TS B U T"Nla_(w-l) =

—H(N— (N) 4 p(N-1) 2pM)
% 5/(N-1) _ P +4p n 13'4 + Ay,

oH —
-1 a(-l(N—l)

Arf1=rn-1) , 1 pN)—p-1) oH
Arilph 1R —B 7 4, O
2 I:z 2 AT N-1 aE(N—l)

7 [ A P

ad
1 5E(N_1) '
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Thus,

A _ Ar |=#{N-1)
oq™ ~ 2 [p + A

. oH
aZD
Equation (2.2.8) implies

5/(N-1) (2.2.11)

— ) gH
= N-1 aE(N—l)

Now equation (2.2.3) which we have already shown to hold true for 7™ k= 0,1, ---N-1

can be expressed as two equations.

(1) _ ={k) '
q - q S | oH OH ]
—ar = 7 |ha ap0e+1) + P (2:2.12)
=(k+1) _ (k) 7
PP _ 1, oH ., o (2.2.13
At 2 ] ktl oty k aa(k)_ )
Using the continuity constraints
ﬁ(k+1)—ﬁ'{k) : g 't +a'(k)
AT - 2
l—){k+1)_-l3-(k) _ 5’(k+1)+3f(k)
AT - 2
equations (2.2.12) and (2.2.13) become:
=Hk+1) | =Hk)
q +9q = 1 oH oH
CR L R [,\k n= R +h 35(")] (2.2.14)
—{k+1) , =i(k)
P +Pp | dH dH
I 4 [,\k s 5q(k)] (2.2.15)
Assume for some k, 0 <k < N-2 that:
=1(k) oH (2.2.16)



Equation (2.2.14) implies:

=r(k+1) dH
3" = A1 _6§(lc+]) (2.2.17)
Equation (2.2.10) implies (2.2.16) holds for k =0. Therefore, by induction:
=k} _ oH -
q = M~y k=0,1,.--N-1 (2.2.18)
=0
Similarly, assume for some k, 0 <k < N-2 that:
=t{kdl) .
Equation (2.2.15) implies:
..} (2:2:20)
=0
Since by (2.2.11) equation (2.2.19) holds for k = N-2, we have by induction:
g = M k=01, N1 (2.2.21)

Using symplectic notation, equations (2.2.18) and (2.2.21) can be combined into the

following equation, which is equation (2.2.4).

7/ oH_ y _g,1,... N1

Equation (2.2.5) follows easily from (2.2.1) and (2.2.9).

BA  _ =y _ —0.1. .- N-
a}!k__u(z )= 0 k=0,1,---N-1

Finally, to conclude the proof, we observe that each step used above is reversible
~and thus equations (2.2.3)—(2.2.5) not only are necessary, but also sufficient for a

piecewise—linear, continuous function to be a DTH trajectory. I
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2.3 Conservation Laws of DTH Dynamics

‘The DTH equations for autonomous systems with n degrees of freedom can be
reduced in the same way that the equations of autonomous systems with one degree of

freedom were reduced in Corollary 1.11. For autonomous systems, the variables El(ﬁl = t.

and '59;)_{_2 =P, can be eliminated from equations (2.2.3)—(2.2.5) in the following way.

First, we observe that since zgn)+2 =p, and since Py does not appear in H('z'( ))

me®) _ |
=2,

It follows then, from (2.2.5) that:

Zp4l — Znyd

e Ay
- T (937)

1

5| A +A =

2| k1 ke ) 2
a-£n+2} 3-£n+2

Hence, EH?_I is explicitly dependent on A, and A ,,. Since the system is autonomous,

"'E' _21 does not appear in the remainder of the equations. Next, observe that equation (2.2.5):

St1) _ =() (

H(E(k)) = z‘m+2 + H(_(k))

implies
-{k k
Ty, = —HEY) (23.2)
(k)
Since H(;) ) =0 for autonomous systems, we have
n+1
(k+1) _ (K
A - k+1 k -
AT 3'£.+1’ Fnds
or
=(k+1 k
gn.:d) E(zn)+z =0 (2.3.3)

Using (2.3.2) to substitute for Eg;_)+2 in (2.3.3) we get:



Il we define ¢ =1{qy - q,, Py pn)T €R?®  (where the variables t and p no longer

appear) the DTH equations for autonomous systems can be expressed as:

—(k-l-l) —(k) —(k+1) "(k)
o T OH( ) OH(C )|, _
a2 A oy P | k=0 Lo N2 (235)
a¢ I
={)
Er(k) = a3 3H(Ck ) k=0,1,--- N-1 (2.3.6)
6-( )
¢
B - 5@ =0 x=0,1,.-- N-1 (2.3.7)

Equation (2.3.7) shows that, for autonomous systems, the Hamiltonian function is exactly
conserved at the midpoints of DTH trajectories.
Next, we show that all the guadratic conservation laws of a Hamiltonian system are

exactly reproduced at the vertices of a DTH trajectory. Let L({) be the quadratic function
L = 3@TAQ) +bTg+e (2:3.8)
where A = AT. We have then that
LC(O = A( + b (2.3.9)

Assume L({) is conserved for the Hamiltonian system having the Hamiltonian function

H{¢). Then the Poisson bracket of L and H is identically equal to zero.

[L,H = (LC(C))TJ (HC(C)) =0 (2.3.10)

From (2.3.8) and (2.3.9) we have:
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L(¢™*t)y _ (™)
AT

A (% ¥ INTA () — 1 (¢W)TA () + pTt+) - c“"))

AT

T
C(k+1) + C(k) C(k'f'l) - C(k) C(k‘l‘l) — C(k) B
(‘2— Al | + V] =

EAE) + ) -

L (% (&A1) 4 (UNTy (glht) _ i)y bT(C(k+l) _ c(k))) _

((A f(k))T + b'*") .

(L &™) 7.

But from equation (2.3.6) and (2.3.10) we have
L@ 7Y = @& (w8 M)
= (L) (B, ™))
= 0
Therefore, from (2.3.11) we have
L) - ™) = o

: Clearly, L({) is exactly conserved at the vertices of a DTH trajectory.

(2.3.11)

(2.3.12)
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CHAPTER 1II

EXISTENCE AND UNIQUENESS

3.1 Preliminary Results

In this chapter we present sufficient conditions for the local existence and uniqueness

of DTH trajectories. We will prove that, for Hamiltonian functions which satisfy certain
. . =(k) —1(k) . .

conditions, there always exist 2’ and % k=0, 1, --- N-1, which, for sufficiently small

values of A7, determine a piecewise-linear, continuous trajectory and which also satis{ly the

DTH equations:

Setl) _ ) o™y aH(E®)
'Z—AT—Z' = ‘2—-][ k41 af(k'H) + A 35‘(]‘) k=0,1,..-N-2 (3.1.1)
(k)
W _y yOHETY e
AR =ty k=0,1,---N-1 (3.1.2)
HE™) =0 k=01, ---N-1 (3.1.3)

Assume A, and 7(® are chosen so that do>0 and 7 satisfies (3.1.3) for k=0.
Since T'® does not appear in equations (3.1.1) and (3.1.3) and since /0 s explicitly

(k)

dependent on Z'‘ in equation (3.1.2) to prove the existence of solutions, it is sufficient to
prove the existence of Ak +1 and Flkt1) satisfying equations (3.1.1) and (3.1.3). We will
use an induction argument to extend conclusions from k=0 to k=1, 2,--- N-1. In this
chapter, to simplify nota.tio'n;' we will use z° to represent E(k), z for E(k+l) and the
variable h for Ar. Recall that H(z) = 2., + H(z). Let H® represent M(z°), HZ
represent H,(2°) and Hj, represent H,,(z°) where H, is the gradient and H,, the

Hessian matrix of H(z). As in Section 2.2, z € R?¥2, Using the simplified notation, the

DTH equations, exclusive of (3.1.2) can be written as follows:



2-20 — 21 [MH,(z) + 2 HE] = 0 (3.1.4)
H(z) = 0 (3.1.5)
As was pointed out in Section 1.4, equations (3.1.4) — (3.1.5) are singular at h = 0.

Let us first cutline the method of proof which will be given in detail in Sections
3.2-34. IWe will use the Newton-Kantorovich Theorem and the Inverse Function Theorem
to prove the existence and local uniqueness of a C? function z(h,A) which satisfies equation
(3.1.4) for bounded values of A and sufficiently small values of h. We will use z(h, 1) to
decouple (3.1.5) from (3.1.4) by defining a new function g(h,A) =H(z(h,1)). In Section
3.3, we will apply the Newton-Kantorovich Theorem to the decoupled equation g(h,\) =0.
We will show that for all sufficiently small h,# 0 there exists a A; = A(hy) such that
g(ho,A;) = 0. Finally, in Section 3.4, we will show that a solution to (3.1.4) —(3.1.5) for
AT =h,, is given by (A, z') where X =A(h,) and 2! =3(ho);). We will use the
following theorems and lemmas.

THEOREM 3.1: (Newton-Kantorovich Theorem)
Assume:

(i) DCR® Disconvex

(i) F:R®—-R"

(i) FeCY{D)

(iv) “ F,(z%) - Fy(z}) " < vl2=2 forall 2}, 22eD

(v)  There exists a 22 €D such that [F;1(z)| < 8

(vi) a<0.5 where a=fyp and o= " F;1(z°) F(z°) "

(vii) . B(z%r_) C D where r_= ﬁl_‘r(l_m)
Define r = B%( 1441 =2a ). Then the sequence 2@ given by:

L4} — () _ F;‘(z(i)) F(z(i)) i=0,1,--

where z(® = 22, is well defined, 2 s z* ¢ B(z°,r_), F(z*) =0 where z* is the only
zero of F(z) in B(z%,r, ) N D and:

" z(1) _ g " < 28y ||z(1) —2° ]] :
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Proof: (See [11, p. 155])-

THEQOREM 3.2: {Implicit Function Theorem)
Assume:

() f:SCRKT" o R® Sisopen

(i) feC'(8)

(ifi) 'There exists a point (x!, z) €S such that f(x!, z}) =0

(v) f,(x}, z1) is nonsingular
Then there exists an open set V C R¥ where x' € V and there exists a unique function
z:V — R® such that z € C*(V), z(x!})=z! and f(x,2(x)) =0 for all xeV.

Proof: ( See [1, p. 374] and {2, p. 148] )

LEMMA 3.3: (Matrix Perturbation Lemma)
Assume I and E are square matrices where I is the identity matrix. If E| <1,
then (I—E) is nonsingular and:

-1 1
lo-2)71 < gy

Proof: ( See [4, p- 59] )

THEOREM 3.4: (Mean Value Theorem)

Assume:
(i) F:RR=R"

(i) DCR" is convex
(iii) FeCHD)
Then for all z!,z2€D

“ F(z2) — F(z!) “ < sup H F (2 + t(z2 —21)) " 22 — 22
0<i<

Proof: (-See [11, p. 143] )



3.2 Existence of a Decoupling Function

THEOREM 3.5:
Assume:

f(h,2) = z2-2° — 13 [AH,(z) + A HE (3.2.1)

where X, > 0, HeC3(U), Uc R12 g open and z° €D, where H(z%) =H° =0,
D, is open, bounded and convex and D, C U. Then there exists a §, > 0, an open set
Q,=Q(8,) where Q(5)=(0,8)x(0,2),) and there exists a C? function z(h,))
which maps Q, into D, and for which:

f(hAz(b,A)) = 0 forall (h,))€Q, (3.2.2)

Before proving Theorem 3.5, we state some facts about H(z) and its derivatives and we

prove f{(h,),z) has some special properties. We will use the abbreviation sup for the
A
supremum over A € (0, 24,) and sup for the supremum over z € D,. We will also use the

oH 6H
notation sz‘, for 73'3—2 and szzi for 6:—2 where 1 <i < 2n+2.

Since H(z) is C* on D,, which is'a compact subset of R?™2, we can define the

following constants: M, =sup | H(Z) | (3.2.3)
Z
My = sup [ H,(3) | (3.24)
Mg = sup |Hz.® | (3-2.5)
2n+42
M, = Z sup “ H,z2 (%) “ (3.2.6)
i=1 Z
LEMMA 3.6:

Assume the conditions of Theorem 3.5 hold. Then f(h,A,z) has the following properties:
(a) hm sup "f(h A2 )" =0
(b) lecn 6 > 0 there exists a 1'(6) >0 such that:

lz(0.2,2%) — £5(0,0, 20 || < () 122 -2 |
for all zl, z% € Do, (h,A) € Q(8)

(¢c) For f#>1 thereexistsa § >0 such that f;(h,A,z) is nonsingular and:

| ' h\2) | < B forall z€Do and (b,A) €Q(sp)
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(6 8 in this special notation does not denote partial differentiation.)

Proof of (a):
From (3.2.1):
hlin; 4 5P |n,3,22)| = hli";f%p _h(A;’\O)J
< lim RYCOYRT T

Proof of (b):

By the Mean Value Theorem ( Theorem 3.4 ) with F=H,;.

" szs_(zz) —-sz'_(zl) ]I < sup ” szz (22 + T (2% -21) " ll22 — 22|l

which implies:

“ sz(zz) - sz(zl)" < Z" sz (z )— sz (zl) "

i=1
2n+2

IA

sup || H;;- .(32‘1'E (z2 - zl)) " 222
i=1 0<tg !
< M4 “zz—zl “
Let 7(5) = 6XollINIM . Then for (h,A) € Q(6), 2z}, 22 €D,
[ = G0A )| = | -5 3 [Hppte?) — (et

< EY1IN M6 —Hyy)|

< 62 0130M, [22 -2

IA

7(6) 122 — 21|
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Proof of (c):
From (3.2.1)
fhhz) = 1 - B I,
= I - E(b)z)
where Eb,z) = (Y I H,0)
Let by = EifllT_IIIE

Then for (h,A) € Q(ﬁﬁ) and z €D,

IE®A2) ]| H (’12—") J Hyp(2) "
< & 10 )

S 6‘9 *\o "J " M3

g1
B

IA

By the Matrix Perturbation Lemma (Lemma 3.3) f,(h,A,2) is nonsingular for all

(h,A) € Q(éﬁ) and z € D,. Moreover,

Ji ool = [0-2000)"| < gl < = < 8



Proof of Theorem 3.5:

Consider the family of functions {f(h,A, z)} parametrized by (h,)) € Q(8) for
some § > 0. First, using the Newton—Kantorovich Theorem (Theorem 3.1) we will show
that for each (h,A) € Q(&,) where bo 1s sufficiently small, the equation f(h,A,z) =0 has
a locally unique zero, z(h,A) to which Newton’s method converges quadratically. Then,
using the Implicit Function Theorem, we will show that z(h,)) is C? on Q(,).

By assumption, H¢€ C3(U). Since D,C U, from (3.2.1) it follows that for each
(h,)) € Q(8), f(h,\,2) is a C? function which maps the convex set D, C R™*? into
R20+2, Thus, for each (h,) € Q(8) conditions (i)—(iii) of the Newton-Kantorovich
Theorem hold true.

Choose fi; > 1. By Lemma 3.6(c) there exists a & 8, >0 such that condition (v)
of the Newton~Kantorovich Theorem, with 8 = 3,, holds true for all (h,A) € Q(¢ ﬁl) and
any 2°€ D,. Let 71 =7(Eﬁl) where v(8) is given by Lemma 3.6(b). Then for all

(h,) € Q(8 461) condition (iv) holds true for v =v;. Define afh,A) = 8,7,n(h,A) where

a(h) = [f;(2,2°) f(h,),2°) | Then
lim sup o(h,A) = lim sup ﬂl-qu(h,j)
h—0ot X hoot 2

< Jlim owp |05, )| 0520

1A

Ain iAol

= 0

. where we have used Lemma 3.6(a). Thus, there exists a 655 < § 8 such that for all
1

(h,A) € Qg 5), condition (vi) of the Newton~Kantorovich Theorem holds true. Since D,

.is open, there exists an r; >0 such that B(z%r;) C Do. Define:

(b)) = ﬁ(l—,ﬁT(h,A))
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and define ry(h,2) = )3_17_ (1 +,|1 —2a(h,A) )
1"

We have
lim sup r_(h,A) = lim sup 1 1—1|1—2a h,A
h—-ot Xp (&%) h=0t 3 5171( ( ))
1 . =
= —1—- |12l h,\
ﬁl'?'l( J th:I"' sl:\{P ﬂf( ) )
= 0

Thus, there exists a 6r1< 8p5 such that r_(h,A}) < r; forall (h,A)EQ(&rl). Therefore,

B(z%r_(h,2)) C B(z%r;) C D, satisfying condition (vii) for all {(h,A) € Q(ﬁrl). If we
choose 6, < 6"1 all the conditions of the Newton—Kantorovich Theorem are satisfied for each
(h,A) €Q, where Q_,=Q(8,). This implies there exists a function z(h,A) which maps Q_
into D, and which has the property that for each (h,A) € Q,, z(h,A) is the unique zero of
1 )N Dy. Uniqueness follows from the fact that, by the Newton—

B
Kantorovich Theorem, z(h,}) is unique in B(z°%r (h,A)) "D, and since ﬁl‘?' <ry(h,2),
171

f(h,2,z) =0 in B(z°,

B(z°, 61171) C B(z°,r,(h,Y) forall (h,A)€Q,

Finally, we show that z(h,A) is C? on Q, Let S=Q_ xDo. f(hA,z) is c?
on S and f,(h,A,z) is nonsingular on S. For (h;,A)€Q, and = z(hy,4,),
f(h,,A,, z!') = 0. By the Implicit Function Theorem (Theorem 3.2) there exists an open set
V CQ, containing (h;,};) and there exists a C? function % (h,)) defined on V such
that % (hy,A) =2' and f(h,A,% (h,A)) =0 for all (h,A) €V. If there exists an open set
W CV containing (hy,A) such that z(h,A) =% (h,\) for (h,)) €W, then z(h,A) must

also be C? on W.

Since, by the Newton-Kantorovich Theorem, z! € B(z°,r_(hy,},)) C B(ze, '317 ),
11

' by the continuity of 7 (h,A) there exists an open set W C 'V containing (h,,A;) such that

Z (W) C B(z°, For each (h,A) € W, the uniqueness of the zeros of f(h,A,z)=0

1
ﬁlTl) |
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in  B(z°, 517) implies that z(h,A) =% (h,A) . Therefore, z(h,A) must also be C*? on
171

W. Since (h;,),) is arbitrary in Q,, z(h,)) must be C? on Q. i

3.3 Hamiltonian Censervation Constraint

In this section we prove that, for all sufficiently small values of h > 0, there exist
A(R) which satisfy the scalar equation:

gh,A) = 0 (3.3.1)
where: gh,A) = H(z(h,A)) (3.3.2)

Equation (3.3.1) is the decoupled form of the Hamiltonian conservation constraint
(equation (3.1.5) of Section 3.1). The “decoupling function” z{h,A) of Section 3.2 is used
to decouple (3.1.5) from (3.1.4) resulting in equation (3.3.1). In the proof of
Theorem 3.7 below we will use some properties of g(h,A) and its derivatives and therefore
we will need to obtain expressions for the derivatives of z(h,A). Obtaining the derivatives
of z(h,A) is complicated by the fact that z(h,A) is only given implicitly by equation (3.2.2).

THEOREM 3.7:
Assume the conditions of Theorem 3.5 hold. Let g(h,A) = H(z(h,A)) and let:

¥(z) = (I Hy(2))TH,,(z) (I Hy(z))

and W¥,=W¥(2°). If ¥,# 0, then there exists a 6§, < 6, and a function A(h)
which maps the interval (0,6,) into (0,2);) and for which:

g(hA(h))=0 forall he(0,4,)

Before proving Theorem 3.7, we state and prove three lemmas.



LEMMA 3.8:
Assume the conditions of Theorem 3.5 hold. Thenas h — 0T

(a) z(h,A) — | z°

(b) H(z(h,4)) — H° (=H(z°))
(c) Hy(2(h,A)) — H (=H(=))
(d) Hp(2(h,2)) — My, (=Hz(2°) )

where the convergence in (8) —(d) is uniform in A on the interval (0, 2A,).

Proof:

From Theorem 3.5 we have:
a(h,))—2° = BT [MHy(a(h,)) + AHS
s 3\ — po i h 2
Jim 4o | 20,3y 22| < Jim +( h )IIJ 1226, + AcHS
= 0

which establishes (a). Using the Mean Value Theorem:

| Hiz(b,))) -H°| < sl%p [H@) ] [|2(h,A) =20 = My z(h,)) -z
Thus lim sup |H@z(hA)-H| < M, lim  sup “ 2(h,1)) —2° "
h—ot 3 h—oTt 3
= 0

which establishes (b). Simila}ly, using the Mean Value Theorem:

im o[ < My lim o lah)so] = 0

Thus, (¢) is established.
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2n42
hl-i‘rrl;_'_m;p M (z(hA) ~HE, | < hlin:) s ; up Mg, (2(h,) - HE, |
2n+2 _
< lim +[§; sup [Hyzz, () ||]s;p la(b,3) ~ 2 |
= M, lim  sup |Iz(h,5«)-—zo"
h—|D+ :
= 0
which establishes (d). i

LEMMA 3.9:
Assume the conditions of Theorem 3.5 hold. Then the partial derivatives of 2z(h,)) are
bounded on the set Q, = (D, 8,) x (0, 2),) . Moreover, as h — 0%:

(@)  z,(h)) — ("—*é"ﬂ)a H?

2(h,A)
(b)) 2= — FIH

(C) zlh(h‘A) — %J H;
AA+ A
@  and) — (232 s ug, amg
zyy(h,A
() Lhz'_) = UM IR
where the convergence in (a) —(e) is uniform in A on the interval (0, 2X,).

Proof:

Consider the matrix [I - (%) J sz] =f,(h,A\,z). Asin the proof of Theorem 3.5,

” [1 - ('-’Q'l)a sz] - " = | mAz)] < 8, forall (8,2)€Q,, 2€D, (3.3.3)

Proof of (a):

Since Theorem 3.5 implies z(h,A) satisfies equation (3.2.2) we have:

- 33,4002 ] - (B)aH,z, = 0 (3.3.4)
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-1
2, = [I—(“T)‘)JHZZ] LI[AH, + AHS |

it < |1 - @)rma]”

< (&) i3] 2m, + 2]

FITH[ 220 Hy |+ AoHZ ]

which implies |z | is bounded on Q,. From (3.3.4) we have:

. A+ A
Jm e - (51w -
Jim ,sup L +aHg] - (252)5m + () in,., | =

. A
lim _ sup " (2)s @, ~H2)

+ Lim  BXA[INMsupz,) =
Jim + i

h—0
XollJ IL]L:I;+5|§p||Hz—H2" = 0.

which establishes (a)
Proof of (b):

From (3.2.1) we have:
n-Ban, - B)in,s, = o (3.3.5)

[t~ @n] B

Il S B(FBIM < (P,

Z)

Thus |z,] is bounded on Qo. Moreover:

. . B, _
Hm supjzyff < lim h{=]1JIM, = 0 3.3.6
h0+i“"““ho+ (2) 2 (3.3.6)



From (3.3.5)

. |
sup | 2 — 2amg| = sup|dam, ~ 33w+ (B)im, o,
A A

< 3l sup [H—Hg || + 2T N M, up BN
Using Lemma 3.8(c) and (3.3.6) we have:

(2 1 o
2 _ 13w

lim sup h = 0

Aot 3

Proof of (c):

From (3.3.5)

h A
2y~ 39 M, —9IHg; 2, =53 Hy52, _(hg_)‘)l HezZon — (l‘lﬁl) J ey(h2,2) =0

where:
(zh)Tszzl(z.\)
e;(h,\,z) = :
T
(zp) szzzn +2(ZA)
and where:
Zn+2 T
"el(h,;\,z)“ < Z ||(zh) szz'-(zl)"
i=1
2n+42
S 2 Mo, lzal 12a)
1=
< Mg|zafi ||z
Therefore:
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(3.3.7)

. -1
A
2y, = [1 - (”T)J sz] [%JHZ+]§]JHZZZ,‘+%J szzﬁ(%é):l el(h,)\,z)]

8
Izl < ﬁl[% 31 My + 2T My ||z ||+ ABI || Mg ||z ||+ Sorall Y My 2 | 2 ||]

Thus |z, is bounded on Q,, since 25| @nd |zy| are both bounded on Q,.



tim o 331 =

lim | sup |33 Hy 3 Hg"'%J Hz zh"’%‘] szz"+('hz_A)J Hy, z.\h"’(%l)‘] €1

h—0 A

LN3| lim sup|lH, —He| + Lim B3I M,supze) + AT Ma lim  suppzy || +
130 lim | sup |, ~HZ| + lim  3131M; sup 24 3 fim sup |

lim h2,||JfiM, supjz + lim  hAJJ[[ M, sup Jz, || ]z
Jim BT IM; 1p 2y + lim AN

= 0

where we have used (3.3.6) and the fact that )|z, {|2x| and ||z,,|| are bounded on Q,,.
Proof of (d):

From (3.3.4)

zhh_%:’ H,;2h _%J H,z 2, _(hgi)] H22hn _(]“]QA)J ey(b,Az) = 0

where: T
(z) szzl(zh)

e2(h1)‘! z) =

T
(z4) szzzn_l_z(zh)
Using an argument similar to that used for e;(h,A,z) we can show that:

 feaBAg)| < Mgz,

Solving for zp, we have:

e . -1
2, = [1 L sz] [A.]szzh+(]’—2'\-).] ex(h,), z)]
Pl < B[2Aal My g | + 820l THM, |2, ]

Since 28] is bounded, ||zp| is bounded also. We have:
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A+ A
lim  sup [z, — é(-—-l-—?-l.“l H, TH7[| =
h—oO X
A(A+
Jim | sup | X3 Hyp2, - %J e, TH + (B oy, 2, + (B3 ex0,2)| =
— } X
AA+20) - oo e
lim sup ||AJszzh AJHZ,zp + AT H, 2 h—ﬁ—)JszJH +
h—oT

hm h}.',IIJ]]M3 sup“zhh" + hm hA,,]IJIIM aup"zh" <
h—ot

z), — (A-l-/\ )J Ho

AdIN Yim  sup (|H,, — HS, (12| + AT M, lim | sup
o 55P |Haz— Bz [[)2a] 3,

Thus, (d) is established.
Proof of (e):

From (3.3.5)

A —
ZAA T %J Hyz 25— %J Hy,2) _(hTA)J H,2 250 _(]]T) J e3(h,Az) = 0 (33.8)

Where: (ZA)Tszz] (z5)
eg(h,A,z) =

(z,\) 2229 1 o (z)
and where:

lesthAz)| < Mypay 2

Solving for z,,

23 = _[1 - (&894 sz] - [h TH,z, +(1)) ez(h,).,z)]

[z < By [hllJll Mz |za]l + ol My |25 2] (3.3.9)
lim sup" M" < lim sup ﬁl[llJII M; |zx] + Aol J I My (EXY] ]
h-ol] h—bo
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< B I1TIM, lim sup|z,| + By AT M, lim  sup |2y
h—ot 3 h—ot by

Since h <éo in (3.3.9), ||z5,| is bounded on Q, and we also have:

z
lim sup -—’\-‘\-" =0
h—ot i h
'From (3.3.8)
: Za 1 o
im swp |y ~ g Ha TH =
. Z 1 o A e3(h A z)
im sup|lJH,2— 2THS,IH: + 2 H + J-— =
hot 3 2R T 9 Hz, Z a2 zzh g
lim suleHmh JHg, A ||+ im Loup H;z% - lingamg| +
h-oTt
A TIM, lim sup ‘U‘"+ )to||J||M4 ]1111 sup IIZAH <
h—ot
N3 Lim sup"sz H‘z’z" ||h" + 1311 M5 lun sup "h ——J H
h—oTt h—0
= 0
thus establishing (e). 1

LEMMA_3.10:

Assume the conditions of Theorem 3.5 and Theorem 3.6 hold. Then g(h,A), g,(h,A)
and g,,(h,}) are bounded on Q,. Moreover, as h — 0%

g(h,A) 232 —)2
(a) h2 - _'( 3 )w"
h,A
(b) g*iz ) Ay,
gax(h,A)
(C) "—)"éhz_ - — %“FO

where the convergence in (a) —(c) is uniform in A on the interval (0, 2};)



Proof:

leA) | = [HEBA))| < M,

Thus g(h,A) is bounded on Q,.

Proof of (a):
. g(hA) . B(z(h,2)
1 =2~ =1 ——g 3.3.10
oot B2 paot 2 (3310

Since lim +H(z(h,)«)) = H® =0, since H® is zero by assumption, we can apply L’Hopital’s
h—Q

Rule to (3.3.10)

T
- g(hlA) - K (HZ) Zn
hl-lfl;"' = hl-l-;r%'* 2k (3.3.11)
But by Lemma 3.8(c} and Lemma 3.9(a)
- T T(A+A At T
im ()72, = @TEFRIng = (34%) MpTieg) = o

h—0

where we have used (2.1.3). Therefore, applying L’Hopitals Rule a second time:

(H,) zp,, +2(zh)THm(z,.)

lim +3——(:;") = lim
h—0 h—0

Using Lemmas 3.8(c) and (d) and Lemama 3.9(a) and (d) we have:

: h,A .
hhn{-;'l'g(hz ) = hhné +% ((HZ)Tzhh + (zh)T."ZZ(zh))

= 1o (2PN shg g+ 1A s ) g, (Ao s )

AA A A+ 2o)? 0
= 2042 gy, g + QA2 w3 )
A 0 0)?
G S 3 DPRRCE 5.
)

= -2
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Thus, {a) is established. Next, since

Il

et | = | @)z |

< sup [H,®) ]z
= My ||

[ gx(h,A) | is bounded on Q, since by Lemma 3.9 ||z, || is bounded on Q..

Proof of (b):

T
hsot h h—ot h )

(3.3.12)

From (3.3.5) we have that:
zA:%J H, + (%\-)J H,, z,
Substituting for z, in (3.3.12) implies:

Tf h A
. ga(h,A) (I (P)in, )
m === lim
h—ot hZ h—ot h?

- 1 T . A T Z

= Jim  SpH)TIHY) 4+ lim g (H)TI Hy,
T o

= AH)TIHLE I 1Y)

= 07T ()

g,

Next, since g, =H,z,, we have:

T T
gax = (Hp) zyy +  (23) Hy (z))

leax | < W]l hzanll + [[Hg] f2a)”
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2
< M|z + Myjjzy|

Thus | gy, | is bounded since by Lemma 3.9 both |z,jj and ||z,,| are bounded on Q.

Proof of (c)

T
. g}“\(h)A) . (Hz) Z)‘A . Z‘\ T ZA
lim 22— .2 = lim %22 bm (2 H_ (-2
hl.o"' h? h—ot b2 + h—oo'*'(h) z(h)

= MT1amHg, 1He + GIH)THI,E T HY)

= -l o+l

Uniform convergence of (a)—(c) follows from the fact that each term which depends on h

in the above expressions converges uniformly in A by Lemma 3.8 and Lemma 3.9. I

Proof of Theorem 3.7:

By Theorem 3.5, f(h,A,2)=0 determines a C? function z(h,A) which maps
Q, = (0, 65) (0, 2A;) into Do. Thus, g(h,)=H(z(,)) is well defined on Q. {g(h,A)}
is a family of real-valued functions parametrized by h. We will use the Newton—Kantorovich
Theorem to show that there exists a §, < 6, such that for all h€ (0, 6,), g(b,A)=0 hasa
locally unique zero, A(h) € (0, 23,) to which Newton’s method converges quadratically.

Since z(h,A) € C¥Q,) and H(z) € C*(Do), g(h,A)€C* For fixed h, €(0, &)

g(h,,A) is a real valued function define on (0,2X,). From the Mean Value Theorem we have:

l g,\(hn)‘z) _g,\(hm)‘l) | = I SA.\(hﬂS) ‘ |A2_ )‘Il

By Lemma 3.10, sup | gya(h,,A) | <oo for all h, €(0,65). Let v(h) = sup| ga(hsd) |-
A A



Then:
| ex(bdg) —ga(bA)-] < v(h) A=A for Ay, Ay €(0, 220), b €(0,50)
h,A
Since by Lemma 3.10, gA(hz o) N —'—}12 ¥,#0 as h— 0%, there exists a 6, <6, such

that g,(h,A0) #0 for all he(0, é;). Therefore, SB(h)= | (b,o) I

and a(h) = B(h)y(h)n(h) are well defined for all h < §,.

lim a(h) = ,,li."; 4 Bh)y(h)n(h)

h=—0
sup | gxa(h,d) | | g(h,A0) |
= lim -2
h—+0+ l g‘\(h,Ao) l'z
ga(h,A h,\
sup | J"‘lfz ) | Ig(h2 o) |
. A
= lim
Aot I s,\(hsAo) |2
h2
1o 1 (A= A2
_ %Iwol ( 2 8 ) I';'OI
= 2
(3) 1wl?
= 0

where we have used Lemma 3.10 and the assumption W, #0. Since lim a(h) =0, there
h—o

exists a 6, <&, such that e(h)<j. By Lemma 3.10(c) there exists a 65> 0 such that

v(h) # 0 for all h € (0,83). Thus, there exists a §, = min(é,, §5) such that A(h) #0 and

y(h) #0 forall he(0,4,)- Define r_(h) on (0,6,) as follows:

r(h) = m@—,p_zcx(h))

Using Lemma 3.10 and the fact that a(hk) = 0 as h — 0% we have:

im () = fim — 8l (1-,|1—2a(h))

h—ot h—ot sup | S.\,\(h::\) |
A

U (P S L |
T T = e G |
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. h* (
= lim — (1-yT-2a(w )
ot h,A
k=0 SEPlgM]Eg )I
X
ga(h,A0)
< fm A |(1 JT=2a8) )
= oot gl =2
| 22— |
h
Ao
T 1%} (0)

T
7l %ol

Since lim + r.(h) =0, there exists a 65 < 6, such that
h—= 0

[re—r-(h), Xo+r_(W)]C(0,2)) forall he(0,5)

All the conditions of the Newton-Kantorovich Theorem are satisfied for each h €(0,8,)
where 6, = min{é,, 8,, 65}. We conclude that for each h€(0,4,), Newton’s method

converges quadratically to a zero A(h) of g(h,A) =0. This zero is unique in the set:
[A., —r (h), dotr +(h)] n {0, 2X,)

where:

r, = m)%m(u,]l-za‘(h) )

3.4 Local Existence and Uniqueness of DTH Trajectories

THEOREM 3.11: (Main Result)
Assume He CYU) where UCR®™2 js open. Assume also that A, >0 and that
there exists a Z'") € U such that H('E(O)) =H°=0 and 'II(E(O)) =¥, #0 where:

¥(z) = ([HE) H,(z) (H,R) (3.4.1)
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Then, for any positive integer N, there exists a t.ime_(st)ep AT and locally umg(u?

piecewisg—linear, continuous trajectory determined by % and %’ , where
and 7% satisfy the DTH equations:

=(k+1) (k) 1 BH(EU"H)) SH(EU‘))
L =T l:)"k+1 et k=0,1,--- N-2 (3.4.2)
(k)
k) _, OHET) o
z'% = py k=0,1,--- N-1 (3.4.3)
HZ®) =0 k=0,1,.-N-1 (3.4.4)

Proof:

Since ¥(z) is continuous on U and 'I'(E(O)) # 0, there exists an open ball
Do= B(Em),ro) such that D, CU and W(z) #0 forall z€D,. D, is open bounded and
convex since it is an open ball of R?"t2, Assume M >0, z(&) €Dy, and H( E(k]) =0.
Let:

fhag) = 2-7% — B3 [am,6)+am,60)

By Theorem 3.5 there exists a 65> 0, Q= Q(&E) and a function z(h,A): Q;— D, such
that f(h,z(h,A))=0 for (h,A)€Q. . Let g(h,))=H(z(hN). Since z™ €D,
\I'(E(k)) # 0. Theorem 3.7 implies there exists a 6% < &% and a function
A(h): (0,6%) — (0,2),) such that g(hA(h)) =0 for all he (0,6X). Choose any h < &
andlet Ny =Ahy) and 78 =z(hy M) Then Ay €(0,2)) and thus N, >0,

and E(H'])

€ D, since the range of z(h,A) i8in Ds.
k
HEY ) = Ha(bdieqr)) = 8lby deg) =0 (3.4.5)

Since (hy, Ay 1) € Q). we also have by Theorem 3.5 that:

f(hk"“k+1i E(H-I)) = f(hki)‘k.pp z(hk:'\k.n)) =10 (3.4.6)
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Iélqua.t.ion (3.4.5) and (3.4.6) imply that given hk<f5]: . (AH_I,EU‘H)) satisfies the DTH
equations (3.4.2) and (3.4.4) for the k'™ time step. Moreover, there exists an open set in
which (A, 'E(k'H)) is the only solution to (3.4.2) and (3.4.4).

By assumption, Ay>0, 7 €D, and HE®)=0. Thus, for k=0, A >0,
¥ e Do, and H(E(k)) = 0. Therefore, by induction, there exists a sequence of values
(hyes My1s Z0T)), k=0, 1, --- N-2, which satisfy the DTH equations (3.4.2) and (3.4.4).
Let Ar <min{62, 81, 82, ---E*N']}. Then (A7, Apyy, E(kﬂ)) is also a solution to (3.4.2)
and (3.4.4)} for k=0,1,---N-2.

Assume 7'®) s given by equation (3.4.3). Then z® and T'® determine a
piecewise-linear trajectory. Substituting E"(k) in equation t3.4.2) implies that E(k) and

w{k)

Z are related by the equation:

=(kt+1) (k) = (k) | wr{k+1)
i = (3.4.7)

Equation (3.4.7) shows E’(k) satisfys the éontinuity constraint. Therefore, the trajectory

w(k) (k)

determined by % and 7' is not only piecewise—linear, but also continuous. I

The condition \I'(E(O)) # 0 in Theorem 3.4 has only been shown to be a sufficient
condition for local existence and uniqueness of DTH trajectories. For autonomous
Hamiltonians with positive—definite Hessian matrices, ‘I’(E(D)) =0 if and only if E(o) is a
stationary point of the Hamiltonian vector field of H(¢). (Recall that { € R*™.) In this case,
the analytical solution is constant. Typically, ¥(z) may be zero on a set of isolated points.
The condition that ¥(z) E 0 on an open set is much more restrictive. Systems with linear

Hamiltonian functions, for example, have ¥(z) =0. For one degree of freedom systems,

-¥(z) =0 if one of the coordinates is cyclic. Both cases are easily solved analytically.
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3.5 Positive—Definite Linear Hamiltonian Systems

In this section we will show that for autonomous, positive-definite, linear
Hamiltonian systems, if h, is sufficiently small, the DTH equations have only two solutions,
one of which is constant. For these solutions, Ay, ;= £y where the minus sign

corresponds to the constant solution.

THEOREM 3.12:
Assume H({) is an autonomous, quadratic Hamiltonian function given by:

HQ) = HOTA(Q) +bT¢+c (3.5.1)
where ( €R*™ and A is a symmetric, positive-definite matrix. Assume A, #0 and

¢° #0. Then for sufficiently small he >0, (A, Cl) is a solution to the DTH equations
if and only if A; = % A,.

Proof:

First, we show that there is no loss in generality if we assume:

HE) = 1(07A© (3.5.2)

Given any positive—definite quadratic function:

Qm = 3TA@ + bTn + ¢ (3.5.3)

we can use the transtation:

n = ¢— Alb (3.5.4)

to reduce Q(7) to the form 'given by (3.5.2) plus some constant d. Substituting (3.5.4)
in (3.5.3) we have:
() = QC-ATb)
= J¢-ATD)TA (C-AT'D) + bT(C—-AT'D) + ¢

= 3(0%A) + 4 (3.5.5)
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where d = ¢—1bTaT

Since Hamiltonian functions ciiffering by a counstant have the same equations, we may assume
d=0 in (3.5.5).

For autonomous systems, the DTH equations can be reduced to the form given by
equations (2.3.5) —(2.3.7) of Chapter II. For Hamiltonians of the form given by (3.5.2)

these equations become:

h

(=¢" = RIANC+IL0) (3.5.6)

HOTAQ) -~ HHTAK) = o (3.5.7)
(Equation (2.3.6) is not used in the prool.) Solving for { in (3.5.6) we have:

¢ = [I——(h"A)JA] [I+(-h°2ﬁ)JA](° (3.5.8)

hoA

-1
where by the Matrix Perturbation Lemma {(Lemma 3.3) [I ( )J A] exists for sufficiently

small values of h, and for all X €(0,2),). Assume ¢’ =((h,,A,) is a solution to equations

(3.5.6) — (3.5.7). Then we have:
0 = HNHTAKY - YO)TAK)
= A4 ¢)TA M -¢)
- KereTA A

= B(n@TAIA) + MEOTRIACY

+ AMTATACY) + ,\o(c°)TAJA(C°))

= Do, —2)(CTATA Y
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where we have used the facts that (AJA)T = —(AJA) and:
(chAJA(c) = 0 forany (€R™ (3.5.9)
Thus either A; = ) as claimed or:
€)TAIA(H) = 0 (3.5.10)
Using (3.5.6) with {=¢* and A=), and using (3.5.9) and (3.5.10) implies:
©)TAEY - €AY = TAKE -

= E)TAIAY + o) TaTA()

Therefore

€AY = (HTAER) (3.5.11)
We also have from (3.5.7) that for ¢ =¢?
EHTAH = (OTAED) (3.5.12)
Equations (3.5.11) and (3.5.12) imply that:
(€~ ¢)TA-¢) = (TAE) -2 TAEL)+(O)TAK) = 0

Since A is posit.ivn.hdeﬁnite,‘ we must have ¢! =¢°. Substituting ¢* for ¢ in (3.5.6) we

have:

ho{}; +2)

b
0 = FIANC+IL) = s

JAC®

Since JA is nonsingular and (°3 0 we must have X, = — 2}, as claimed.



Assume Ay = ),. Then (1= ¢(ho,A0) and since ¢! is a solution of (3.5.6)

¢-¢® = ejaitier) (3:5.13)

We use (3.5.13) to show that ¢! also satisfies (3.5.7).

LOTAQ) - XA = YA +O)TAC-¢)

= H+OTA(BP2IAC )
= Be(+()TAIAC +¢)

= 0
where the last expression is zero by (3.5.9). Thus ¢! =((hs,)s) is a solution to the DTH
equations,

Assume A, = —J,. Then (!=¢(hs,—)o) and (3.5.8) implies:
-1
(! = ((ho,2o) = [I+(]l°2"—°):l A] [1+(h_°2'-‘£)JA]g° = ¢°

Substituting ¢° for ¢ in (3.5.7) we see that A; =-A, also yeilds a solution to the DTH

equations, albeit a constant one. l

The proof extends in the indicated fashion for any number of time steps. For
autonomous, positive-definite, linear systems, Theorem 3.12 states that the only nonconstant
solution to the DTH equations is the one for which Ay, =X, If we choose A, =1, then
by induction, A, =1 for the nonconstant solution. If X, =1, equation (2.3.5) reduces to
the trapezoidal method and equation (2.3.6) reduces to the midpoint method. We conclude
_that for autonomous, positive—definite, linear Hamiltonian systems, DTH trajectories can be

computed by using the trapezoidal and midpoint rules for integrating differential equations.
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CHAPTER 1V

NUMERICAL RESULTS

4.1 An Algorithm for Computing DTH Trajectories

Theorem 3.11 provides us with 2 method for computing DTH trajectories. For

fixed Ar, we solve the equation g(Ar, Ay ,;)=0 for Ay ., by using Newton’s method:

Zi+) 50 g(Ar, '\1(31)

L = AL — : {4.1.1)
* + gA(AT, Aﬂl)

th  Newton iterate of Aﬂ!l where /\E_)gl = A,. In order to evaluate

where ,\](‘i_),_l is the i
g(AT, )‘E-)l-l) and g,(Ar, A@,z) in (4.1.1) we need to evaluate z(Ar, AE_%_I). For fixed
values of At and ,\](3_1 we can evaluate 2z{Ar, ’\l((i-)l-l) by solving f(Ar, AE_)‘_I,E(H'I)) =0

for F+Y) using Newton’s method:

5 (4) = TG - fz I(A"’a f\k+1:5(k+l)(i)) f(AT' Ak+1’5(k+1)(j)) (4.1.2)

where E(k'ﬂ)(j) is the j*P Newton iterate of E(k+l)(u) where E(kﬂ)(u) =%, Thus, we
have an “ inner ” iteration of Newton’s method given by (4.1.1) and an “ outer ” iteration
given by (4.1.2). The Newiton—Kantorovich Theorem (Theorem 3.1) implies that both
iterations converge quadratically. Moreover, for sufficiently small values of A7, the linear

systems which must be solved at each stage are diagonally dominant.

4,2 The Kepler Problem in Cartesian Coordinates

In this section, we will illustrate DTH dynamics by considering the Kepler problem,
also known as the one body central force problem. In cartesian coordinates, for appropriately

chosen parameters, the Hamiltonian function for the Kepler problem is:



-1
2

H(qy, 93, P1» P2) = P2 + P32 - (@ + q3) (4.2.1)

In cartesian coordinates, the angular momentum for this problem is the quadratic function:

L(q;, 92, P1» P2) = 9Pz — GaPy (4.2.4)

L(qy, 99, Py P2) is conserved as can be verified by evaluating the Possion bracket [H, Lj.

The exact values of q,(t), q,(t), p;(t) and py(t) for 1 orbit of the Kepler problem for
the initial conditions q;{0) = 0.5, q,(0) =0, p;(0) =0 and p,(0) = 1.2, are shown in Figures
4.1 —4.4. Also shown are approximate values obtained by the trapezoidal and midpoint
methods, discrete mechanics and DTH dynamics. (Midpoint values were used for the DTH
trajectories.) In order to amplify discretization errors, only 25 points per orbit was used.
This was achieved by choosing At=0.15 for the trapezoidal, midpoint and discrete
mechanics methods and choosing A7 =0.06277 for DTH dynamics. (Recall that DTH
dynamics has a varying step size.) From Figures 4.1 —4.4 we see that both the trapezoidal
and midpoint methods have significant phase errors — the trapezoidal method has not
completed an orbit, while the midpoint method has begun a second orbit.

Table 4.1 illustrates conservation laws obeyed by each method. The midpoint
method, discrete mechanics and DTH dynamics conserve angular momentum up to roundoff
error while only diserete mechanics and DTH dynamics conserve energy up to roundoff.

TABLE 4.1: Average absolule deviation in energy and angular momentum
during 400 orbits of the Kepler problem with 25 points per orbit.

Energy Angular Momentum
Trapezoidal Method 1.322x 107! 4,593 x 102
Midpoint Method 5.969 x 102 7.387x 10716
Discrete Mechanics 3.901x 10718 1.738 x 10715
DTH Dynamics (midpoints) 1.285x 10714 8.204x 1074

DTH Dynarmics (vertices) 1.750 x 1072 2.221x1071%
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(a) a,vs py (b} qyvs P
(c) qyvs qp (d) q,vs py, gp=0

FIGURE 4.5: Kepler problem, exact orbit. 25 points per orhit. 400 arhita
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(8) qyvs py (b) qyvs py

(d) q;vs pyy qp=0

FIGURE 4.6: Kepler problem. trapezoidal method. 25 points ner nrhit 400 arhite
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(a) q vs py (b) gy vs p,

(¢) aqyvs 4z (d) 9 VS$ Py, 9, =10

FIGURE 4.7: Kepler problem. midooint methad. 25 noints nar arhit 40N Arhii-
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(a) qpvs py

(b) gyvs p,

(c) qyvs q

FIGURE 4.8: Keoler nrahlem.

(d) 'ql VS Py, Q3 =10

dicrrete maerhanire

DR nAainto mar ~A=hit 40N

m=laltn
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(a) q; vs py (b) q; V8 Py

(d) gy vs py, a;=0

(c) qvs q,

FIGURE 4.9: Kepler problem. DTH dvnamics. 25 noints ner arhit 400 achiée
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(@) qvs Py (b) aq,vs Py

(€) qvs qp (d) qyvs py, g =0

FIGURE 4.10: Kepler problem. trapezoidal methad.
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(a) q1 Vs pl

(C) ql ¥5 q2

FIGURE 4.11:

(b) q, V8 Pa

2

(d) ql vs p], q2 — l]

Kebler nrohlem. midnaint. mathad
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+ »
i
/
(a) q;vs py (b) qyvs p,
+ “~ + p
(c) qyvs q (d) qyvs py, g, =0

FIGURE 4.12: Kebler vroblem. discrete merhanics



7

"
+ -+
f/
(@) q;vs py (b} qyvs p,
+ ‘ + /
(€) ayvs qp (d) qyvs py, 93=0

FIGURE 4.13: Kepler problem, DTH dvnamics.
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4.00
DTH Dynamies
3.00
©
£ 2.00
=
1.00
0.0D rllli_rlilllllr_l_rllII']_l_flillll—l_lllll_llll]
0.00 50.00 100.00 150.00 200.00
step

FIGURE 4.14: Kepler problem, 200 points per orbit, 1 orbit.

Q0O Q-0

(a) trapezoidal method (b) midpoint method
..u“\\\ rhes - __._"-\ o
) / s
Y, + + ;
e d/ &.“w Tt \\\“"'_-
{c) discrete mechanics (d) DTH dynamics

FIGURE 4.15: Kepler problem, Poincare sections, 100 points per orbit, 3,500 orbits.



The complex patterns of the orbits shown in Figures 4.6 —4.9 are due to the
precession effects caused by ti:ne discretization error of each method. The exact orbit, shown
in Figure 4.5, does not precess. The energy conserving properties of discrete mechanics and
DTH dynamics is evident from Figure 4.8(c} and 4.9(c) since both annular regions have the
same inner and outer radius.

The Poincare sections, Figures 4.6—-4.9 part (d), were computed without
interpolating the discrete—time orbits. Instead, the closest point on a given side of the q, =10
plane was projected onto this plane resulting in the appearance of short line segments in each
figure. These segments are particularly prominent in Figure 4.9(d).

Figures 4.10 — 4.13 were obtained by integrating, for 25 time steps, a square set of
initial conditions, visible in Figures 4.10 —4.13 part {a), and then replotting these points.
Discrete mechanics and DTH dynamics exhibit more regularity than the other methods.
DTH dynamics has a markedly different plot because, unlike the other methods, the ending
time varies for each set of initial conditions plotted.

Figure 4.14 illustrates that even for a small time step (A7 = 0.007846) the time
coordinate of DTH dynamics exhibits nonlinear behavior for the Kepler problem. This
suggests that there may exist a limiting trajectory to which the time trajectory converges as
AT — 0. From Figure 4.15 we see that even for small time steps, DTH dynamics has a

significantly slower precession rate than the other methods.
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CHAPTER V
COODINATE INVARIANCE

In this chapter, we present arguments which suggest that DTH dynamics is
coordinate invariant with respect to a set of symplectie, piecewise-linear, continnous
coordinate transforrnations. In particular, we will establish, under certain assumptions, the
equivariance of the DTH equations of dynamics.

Assume (p, W) are local coordinates of the extended phase space of a Hamiltonian
system and assume H(z) is the Hamiltonian function of the system expressed in terms of
(1, W). Let {v(l), v{Nl)} represent the vertices of a collection of DTH trajectories
which are determined by H(z) and which lie in U = (W) C R*™2. Assume there exists a
triangulation, I, of these vertices such that T is consistent with the DTH trajectories. (By
consistent, we mean that each linear segment of each DTH trajectory is an edge of some

simplex, s¥! of 9 where j =0, 1, .-+ N,.)

FIGURE 5.1: A triangulation that is consistent with a collection
of piecewise-linear, continuous trajectories.



¢ ! determines a triangulation of W where v = (p"l(\r(i)) are the vertices and
ol = v,o‘l(s(j)) are the simplices of the triangulation. We denote this triangulation by I @
since it depends on the initial choice of coordinates used to express H(z). Assume a second
set of vertices {V(l), V(Nl)} determine an invertible, piecewise-linear, continuous
coordinate transformation T:U—R?*™2? in the following manner. First, define
T(v(i)) :V(i), i=0, 1, -+ N;. Then, use the values of T at the vertices of the jth

simplex of 9 to determine the linear transformation:
™G = A0 + 69 j=0,1,--- N, (5.1.1)

Finally, if z €s), define T(z) = T(z).

We can use the set of all invertible, piecewise-linear, continuous transformations, T,
defined in the above manner, to determine a collection of PLC (piecewise-linear, continuous)
local coordinates (%, W) where $=Toyp. We denote by PLC(T,) the collection of all
the coordinate transformations 17)2 o ;31_ 1 where ;51 and l?)z are PLC coordinates defined on W.

Assume (;,51, W) and (17;2, W) are PLC coordinates defined on W. Assume
Z(¢) : [ro ™8] — 'Evl(W) is a piecewise-linear, continuous trajectory that is consistent
with T, Then there exists a T €PLC(T,) such that 2(-)=T(3()) is » piecewise-

linear, continuous trajectory in Ez(W) where:

728 = TEk) 0 = 1zH) (5.1.2)
AR N 7. = 71" (5.1.3)

700 _ 6510 k) _ (A(ik))'l 7/%) (5.1.4)
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Equations (5.1.2) —(5.1.4) follow from the piecewise-linearity of T and the consistency of
2(-) with the triangulation -T,.

Consider the subset of PLC(':'I',F) consisting of all T¢€ PLC(‘.’J"P) that are
symplectic — that is, the subset of all transformations having matrices AW in (5.1.1)

which satisfy the symplectic condition:
@\ 5 (20
(A )J (A ) = ] (5.1.5)

We denote this subset by SPLC(‘:TV,).

Consider two different symplectic PLC coordinates, 1'/;1 and 1,'132. Assume 1?;1 and 1?)2
are related by the coordinate transformation Z = T(z) where z are coordinates of 1?;1, Z
are coordinates of 132 and T€SPLC(T ;). If H(z) is a Hamiltonian function for a given

Hamiltonian system in the coordinates of ;Zvl, then K{(Z) given by:
K(Z) = (HoT 1)2) (5.1.6)

is a Hamiltonian function for the same aystem expressed in the coordinates of 132. DTH
dynamics is coordinate invariant with respect 31 and 132 if, whenever 2(-) is a DTH
trajectory of H(z), 2( )= T(E( . )), is the corresponding DTH trajectory of K(Z). In other
words, we have coordinate invariance if the following diagram commutes for all symplectic

PLC coordinates 131 and 1‘/:2.
% ¥y
H(z) ——>— K(Z)

1 b(7)

2(-) —>— (")
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For a given set of initial conditions, there may exist more than one DTH trajectory.
(An example that occurs in discrete mechanics is given in {5].) In Chapter IlI, we showed
that, for sufficiently small Ar, Newton’s method converges to a DTH trajectory that is
locally unique. We define this DTH trajectory to be the “principle” DTH trajectory. If 2(-)

is 2 DTH trajectory of H(z), then E'(k) and T'® must satisfy the DTH egnations:

St) _ ) an( 7+ 1)y SHE™)
== TJ[AkH___' Fe T hom | k=0L-eN2 (5L
X)
. L oHE™)
2 =N Tyt k=01 N (5.1.8)
HEM) =0 k=0,1,---N-1 (5.1.9)

If $(-) is a DTH trajectory of K(z), then 7% and 7'® must satisfy the DTH

equations:

k1) _ o) oK T+ G
y y 1 (¥ OKE™)
Y =Y _ 1yl + k=0,1,---N-2  (5.1.10
At 2 [ k+1 gkt k 7o ( )
- oK(y k)
y k) — wd _6?((::‘)—2 k=0,1,.--N-1 (5.1.11)
KG) =0 k=0,1,---N-1 (5.1.12)

Assume Z(-) is the- principle DTH trajectory of H(z} for the initial conditions A,
and 7. Assume ¥(+) -is the principle DTH trajectory of K(z) for the initial conditions
B, = Ao and S('(O) = T(E(O)). To prove equivariance, we need to show that if T maps 2(-)

to Z(-), then Z(-)=9(.), ie Z(-) is the principle DTH trajectory of K(Z). What we

will actually show is that ﬁ() is at least a DTH trajectory of K(z). We do this by
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showing that Z(-) is a solution to the DTH equations (5.1.10) —(5.1.12).

=(k) = 1(k)

Using (5.1.4), (5.1.8), (5.1.6) and (5.1.5), weshow that Z" ° and Z " satisfy

equations (5.1.11) as follows:

z'(k) - AG]‘) E:(k)

A -]
i)

_ G , (K oT)

_ Ak(A k) =

= a(a%); (5—(kJ a‘(i)

- a5 (-2

_ oK
= a3 e (5.1.13)

o7™

Since A, and g in equations (5.1.7)—(5.1.9) and (5.1.10) —(5.1.12) are Lagrange
multipliers, they are coordinate invariant quantities. Thus, A = y,. By substituting u)

for A in (3.1.13) we have:

/0 _ aK("(k]

= i 5 ) x= 0,1, N-1 (5.1.14)

Equation (5.1.14) shows that ﬁ() satisfies equation (5.1.11). Since Z(-) and T are

both continuous, ﬁ( )= ’I('z‘( . )) is continuous. By the continuity constraint on ﬁ( -} we

have:
) gl gD
AT - 2
_ 1 al( 0K

where we have used (5.1.14). Thus ﬁ() also satislies equation (5.1.10). Finally, since



=(k)

) = (HoT )2

= HE™)

)

Z(-) satisfies equation (5.1.12).

In this section, we presented arguments which suggest that the transformations
SPLC( ;) map DTH trajectories to DTH trajectories. The question of whether SPLC(T ;)
maps principle DTH trajectories to principle DTH trajectories still remains. A number of

other issues also need to be addressed. One guch issue is the question of the existence of

triangulations which are consistent with DTH trajectories.
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