Machine Learning

MNIST

MA 415   Machine Learning
CSSE 415 Machine Learning

Instructors: Team taught by Yosi Shibberu and Rachel Petrik

Course Prerequisites:
Junior standing and MA212, and either MA223 or MA381, and one of CHE310, CSSE220, ECE230, MA332, MA386 or (ME323 or ME327).

Course Description

More powerful and cheaper computing and large data sets have made machine learning possible for a wide range of products and applications. In this course, we study the mathematics underlying the most successful machine learning algorithms used in practice today.

Course Topics

  • linear and logistic regression
  • support vector machines
  • decision trees, bagging, boosting and random forests
  • k-means clustering
  • under/over-fitting and the variance/bias trade-off
  • model regularization and validation
  • the curse of dimensionality
  • dimensionality reduction methods
  • student project on an advanced topic

Course Textbooks

  1. The Hundred-Page Machine Learning Book by Andriy Burkov. (optional)
  2. An Introduction to Statistical Learning by G. James, D. Witten, T. Hastie and R. Tibshirani. This book is free.

Software

We will use the Python based package Scikit-Learn.

plot_classifier_comparison_001

Past Student Projects

  1. UFC Match Outcome Predictor
    Evan Cruse, Alex Ketchan, Jack Kovacs, Andrew Walkowski
  2. Predicting the Outcome of an MLB At-Bat Using Machine Learning
    Cooper Brotherton, Max Chaplin, Danielle Villa, Michael Yager
  3. Pokemon Showdown Win Prediction
    John Bass, Ray Fang, James Kelley, Jacob Ritenour
  4. Predicting Flight Delays
    Brendan Boewe, Nathaniel Craan, Jake Nickel, Wojciech Zacherek
  5. Stroke Prediction
    Yutong Chen, Bowen Ding, Mashangjun Li, Jiadi Wang
  6. Kings County Housing
    Steven Feng, Aditya (Laya) Mehra
  7. Fraud Detection
    Jason Cramer, David Gottlieb, Leding Ren, Nick von Bulow
  8. League Of Legends Winning Team
    Ainsley Liu, Sybil Chen, Wendy Ju, Yunpu Zhang
  9. Weather Prediction
    Joey Hatfield, Trey Kline, Zach Kelly, Jonathan Moyers
  10. F1 Race Prediction
    Campbell Garvin, Andrew Kosikowski, Dalton Julian, Braxton Lee
  11. Steam Games, A Machine Learning Project
    Li Da, Will Yelton, Cullen LaKemper, Travis Zheng
  12. U.S. Equities Analysis
    Jared Brown, Shengjun Guan, Thomas Nandola, Amruth Pabba
  13. Heart Attack Prediction
    Meghna Allamudi, Kyle Brown, Ezenna CMadu, Vanskika Reddy
  14. Flight Delay Prediction
    Jiafan Lin, Achintya Gupta, Chengquian Lyu, Evan Cochran, Zijian Huang
  15. Video Game Sales Prediction
    Landon Bundy, Anand Desai, Joey Hegg, Jack McGlynn
  16. Examining the Factors Related to the Opioid Epidemic Proliferation
    James Brandewie, Luke Ferderer, Jayden Foshee, Elliya Sorenson
  17. Expedia Hotel Recommendation
    Cehong Wang, Haozhe Wu, Qiyue Gao, Shantao Cao
  18. Crytocurrency
    Ben Goldstein, Ian Lim, Haulein McInerney, Dylan Scheumann
  19. Job Change Analysis
    Xusheng Liu, Jerry Zheng, Wenzing Li
  20. TAP Scores
    Aman Bajaj, Derek Grayless, Eric Kirby, Arjun Mahajan
  21. MBTI Personality Prediction from Internet Posts
    Ian Landwehr, Jessica Myers, William Thesken, Andrea Wynn
  22. Predicting Strokes
    Jared Petrisko, Luke McNeil, Connor Schulte, Cody Steiner
  23. Improving Predictability Using the General Social Survey
    Eric Tu, Aditya Burle, Jeremiah Wooten, Simon Snider
  24. Job Change Analysis
    Xusheng Liu, Jerry Zheng, Wenxing Li
  25. Code Autocomplete
    Jake Bellis, Justin Calareso, Zach Glover
  26. Stock Market Price Predictions
    Samuel Flickinger, Jacob Hendrich, Nick Nie, Jacob Petrisko
  27. StackOverflow Tag Prediction
    Nihaal George, Brevin Lacy, Tommy McMichen, Wes Siebenthaler
  28. Recognizing Friendliness of City Squirrels
    Terry Cheney, Jackson Hajer, Christian Meinzen, Bohdan Vakhitov
  29. Predicting Cardiovascular Disease
    Darius Daugvila, Aaron Glave, Matthew Lyons, Miranda Masters
  30. YouTube Data Analysis
    Bowen Feng, Howard Hu, Jing Lin, Yuchen Zhao
  31. Predicting Movie Success
    Ash Fowler, Trey Fuentes, Megan Hawksworth, Addi Reynolds
  32. Digit Recognition
    Xiangnan Chen, Augustine Cui, Qinghong Wu, Valentine Wu
  33. Used Car Value Predictor
    Natalie Allen, Jason Chen, Dominic Grazioli
  34. Nine Men’s Morris
    Sterling Hayden, Quinn McKown, Hao Yang
  35. Inter-State Traffic Volume
    Carlos Feng, Xingheng Lin, Allen Liu, Wenze Ma
  36. Breast Cancer Prediction
    Lingyun Li, Max Wang, Yiyuan Wang, Tiantian Zhang
  37. Heart Disease Rate Prediction
    Xiangbei Chen, Ming Lyu, Picheng Tang, Yuankai Wang, Kaiyu Xie
  38. Predicting House Prices in Ames, Iowa
    Adam Baker, Cobi Illian, Aaron Kulinowski, Johann Ryan, Andrew Sturdevant
  39. Using Gradient Boosted Trees to Predict the Success or Failure of Kickstarter Projects
    Katana Colledge, Kathi Munoz, Parker Phillips, Phillip Tyler, Oscar Youngquist
  40. Forecasting Chicago Temperature
    Akanksha Chattopadhyay, Wenkang Dang, Bryan Gish, Cade Jin, Scott Sun
  41. Predicting World Series Performance with Machine Learning
    Ty Adams, Rohit Chandra, John Lambrecht, Tyrus Sooneborn
  42. Using Machine Learning to Assess Possibility of Radio Communication
    Tom Joyner, Manoj Kurapati, Erik Stockwell
  43. Predicting Use of Force by Seattle Law Enforcement
    Mariana Lane, Ishan Saraf, Anirudh Singh, Austin Stieglitz, Jennifer Wohlpart
  44. Using Global Media Data to Predit Asset Prices
    Collin Moore, Leela Pakanati, John Michael Van Treeck, Jack Wassom, Justin Willoughby
  45. Identifying Fruit Attributes by Image
    Eric Moorman, Christopher Nurrenburg, Alex Schmalzl, Han Wei
  46. Neural Networks Attempt to Mimic Several Functions
    Austin Derrow-Pinion, Kice Sanders, Aaron Bartee
  47. Predicting the Popularity of Online News
    Yuzong Gao
  48. Creating a Virtual Physicist
    Jared Hoffman
  49. Sentiment Analysis of Tweets about Presidential Candidates
    Steven Rasp
  50. RI/O: An Artificial Intelligence Based on the Neural Evolution of Augmented Topologies Algorithm, Adam Finer, David Lam, Xiao Xin, Runzhi Yang
  51. Music Genre Classification,
    Ryan Dick, Addison Williams
  52. Drone Detection,
    Christian Owen, Asher Morgan, Tommy Mulc, Andy Yuk
  53. Using Machine Learning to Balance Call of Duty Gameplay,
    Phillip Shepard, Qikai Huang
  54. Predicting World Series Performance with Machine Learning,
    Ty Adams, Rohit Chandra, John Lambrecht, Tyrus Sonneborn
  55. Using Machine Learning to Assess Possibility of Radio Communication,
    Tom Joyner, Manoj Kurapati, Erik Stockwell
  56. Predicting Use of Force by Seattle Law Enforcement,
    Mariana Lane, Ishan Saraf, Anirudh Singh, Austin Stieglitz, Jennifer Wohlpart
  57. Using Global Media Data to Predict Asset Prices,
    Collin Moore, Leela Pakanati, John Michael Van Treeck, Jack Wassom, Justin Willoughby
  58. Identifying Fruit Attributes by Images,
    Eric Moorman, Christopher Nurrenburg, Alex Schmalzl, Han Wei
  59. Dota2 Line-up Helper
  60. Target Tracking by Vision
  61. Predicting Breast Cancer with Cell Images

Unknown's avatar

About Yosi Shibberu

Professor of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803, USA
This entry was posted in Uncategorized. Bookmark the permalink.